Al taweraqi, Nada, and Ross D. King. 2022.
“Improved Prediction of Gene Expression Through Integrating Cell Signalling Models with Machine Learning.” BMC Bioinformatics 23 (1): 323.
https://doi.org/10.1186/s12859-022-04787-8.
Baker, Ruth E., Jose-Maria Peña, Jayaratnam Jayamohan, and Antoine Jérusalem. 2018.
“Mechanistic Models Versus Machine Learning, a Fight Worth Fighting for the Biological Community?” Biology Letters 14 (5): 20170660.
https://doi.org/10.1098/rsbl.2017.0660.
Chen, Richard J., Ming Y. Lu, Tiffany Y. Chen, Drew F. K. Williamson, and Faisal Mahmood. 2021.
“Synthetic Data in Machine Learning for Medicine and Healthcare.” Nature Biomedical Engineering 5 (6): 493–97.
https://doi.org/10.1038/s41551-021-00751-8.
Compagni, Riccardo Delli, Zhao Cheng, Stefania Russo, and Thomas P. Van Boeckel. 2022.
“A Hybrid Neural Network-SEIR Model for Forecasting Intensive Care Occupancy in Switzerland During COVID-19 Epidemics.” PLOS ONE 17 (3): e0263789.
https://doi.org/10.1371/journal.pone.0263789.
Gaw, Nathan, Andrea Hawkins-Daarud, Leland S. Hu, Hyunsoo Yoon, Lujia Wang, Yanzhe Xu, Pamela R. Jackson, et al. 2019.
“Integration of Machine Learning and Mechanistic Models Accurately Predicts Variation in Cell Density of Glioblastoma Using Multiparametric MRI.” Scientific Reports 9 (1): 10063.
https://doi.org/10.1038/s41598-019-46296-4.
Ginsberg, Jeremy, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski, and Larry Brilliant. 2009.
“Detecting Influenza Epidemics Using Search Engine Query Data.” Nature 457 (7232): 1012–14.
https://doi.org/10.1038/nature07634.
Jia, Xiaowei, Jared Willard, Anuj Karpatne, Jordan S. Read, Jacob A. Zwart, Michael Steinbach, and Vipin Kumar. 2021.
“Physics-Guided Machine Learning for Scientific Discovery: An Application in Simulating Lake Temperature Profiles.” ACM/IMS Transactions on Data Science 2 (3): 1–26.
https://doi.org/10.1145/3447814.
Jorner, Kjell, Tore Brinck, Per-Ola Norrby, and David Buttar. 2021.
“Machine Learning Meets Mechanistic Modelling for Accurate Prediction of Experimental Activation Energies.” Chemical Science 12 (3): 1163–75.
https://doi.org/10.1039/D0SC04896H.
Kandula, Sasikiran, and Jeffrey Shaman. 2019.
“Reappraising the Utility of Google Flu Trends.” PLOS Computational Biology 15 (8): e1007258.
https://doi.org/10.1371/journal.pcbi.1007258.
Lazer, David, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014.
“The Parable of Google Flu: Traps in Big Data Analysis.” Science 343 (6176): 1203–5.
https://doi.org/10.1126/science.1248506.
Lu, Yingzhou, Huazheng Wang, and Wenqi Wei. 2023.
“Machine Learning for Synthetic Data Generation: A Review.” arXiv.
https://arxiv.org/abs/2302.04062.
Pearl, Judea. 2019.
“The Seven Tools of Causal Inference, with Reflections on Machine Learning.” Communications of the ACM 62 (3): 54–60.
https://doi.org/10.1145/3241036.
von Rueden, Laura, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch, et al. 2023.
“Informed Machine Learning A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems.” IEEE Transactions on Knowledge and Data Engineering 35 (1): 614–33.
https://doi.org/10.1109/TKDE.2021.3079836.
Wang, Lijing, Jiangzhuo Chen, and Madhav Marathe. 2020.
“TDEFSI: Theory-guided Deep Learning-based Epidemic Forecasting with Synthetic Information.” ACM Transactions on Spatial Algorithms and Systems 6 (3): 15:1–39.
https://doi.org/10.1145/3380971.
Willard, Jared, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. 2022.
“Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems.” ACM Computing Surveys, March, 3514228.
https://doi.org/10.1145/3514228.
Zampieri, Guido, Supreeta Vijayakumar, Elisabeth Yaneske, and Claudio Angione. 2019.
“Machine and Deep Learning Meet Genome-Scale Metabolic Modeling.” PLOS Computational Biology 15 (7): e1007084.
https://doi.org/10.1371/journal.pcbi.1007084.
Al taweraqi, Nada, and Ross D. King. 2022.
“Improved Prediction of Gene Expression Through Integrating Cell Signalling Models with Machine Learning.” BMC Bioinformatics 23 (1): 323.
https://doi.org/10.1186/s12859-022-04787-8.
Baker, Ruth E., Jose-Maria Peña, Jayaratnam Jayamohan, and Antoine Jérusalem. 2018.
“Mechanistic Models Versus Machine Learning, a Fight Worth Fighting for the Biological Community?” Biology Letters 14 (5): 20170660.
https://doi.org/10.1098/rsbl.2017.0660.
Chen, Richard J., Ming Y. Lu, Tiffany Y. Chen, Drew F. K. Williamson, and Faisal Mahmood. 2021.
“Synthetic Data in Machine Learning for Medicine and Healthcare.” Nature Biomedical Engineering 5 (6): 493–97.
https://doi.org/10.1038/s41551-021-00751-8.
Compagni, Riccardo Delli, Zhao Cheng, Stefania Russo, and Thomas P. Van Boeckel. 2022.
“A Hybrid Neural Network-SEIR Model for Forecasting Intensive Care Occupancy in Switzerland During COVID-19 Epidemics.” PLOS ONE 17 (3): e0263789.
https://doi.org/10.1371/journal.pone.0263789.
Gaw, Nathan, Andrea Hawkins-Daarud, Leland S. Hu, Hyunsoo Yoon, Lujia Wang, Yanzhe Xu, Pamela R. Jackson, et al. 2019.
“Integration of Machine Learning and Mechanistic Models Accurately Predicts Variation in Cell Density of Glioblastoma Using Multiparametric MRI.” Scientific Reports 9 (1): 10063.
https://doi.org/10.1038/s41598-019-46296-4.
Ginsberg, Jeremy, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski, and Larry Brilliant. 2009.
“Detecting Influenza Epidemics Using Search Engine Query Data.” Nature 457 (7232): 1012–14.
https://doi.org/10.1038/nature07634.
Jia, Xiaowei, Jared Willard, Anuj Karpatne, Jordan S. Read, Jacob A. Zwart, Michael Steinbach, and Vipin Kumar. 2021.
“Physics-Guided Machine Learning for Scientific Discovery: An Application in Simulating Lake Temperature Profiles.” ACM/IMS Transactions on Data Science 2 (3): 1–26.
https://doi.org/10.1145/3447814.
Jorner, Kjell, Tore Brinck, Per-Ola Norrby, and David Buttar. 2021.
“Machine Learning Meets Mechanistic Modelling for Accurate Prediction of Experimental Activation Energies.” Chemical Science 12 (3): 1163–75.
https://doi.org/10.1039/D0SC04896H.
Kandula, Sasikiran, and Jeffrey Shaman. 2019.
“Reappraising the Utility of Google Flu Trends.” PLOS Computational Biology 15 (8): e1007258.
https://doi.org/10.1371/journal.pcbi.1007258.
Lazer, David, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014.
“The Parable of Google Flu: Traps in Big Data Analysis.” Science 343 (6176): 1203–5.
https://doi.org/10.1126/science.1248506.
Lu, Yingzhou, Huazheng Wang, and Wenqi Wei. 2023.
“Machine Learning for Synthetic Data Generation: A Review.” arXiv.
https://arxiv.org/abs/2302.04062.
Pearl, Judea. 2019.
“The Seven Tools of Causal Inference, with Reflections on Machine Learning.” Communications of the ACM 62 (3): 54–60.
https://doi.org/10.1145/3241036.
von Rueden, Laura, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch, et al. 2023.
“Informed Machine Learning A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems.” IEEE Transactions on Knowledge and Data Engineering 35 (1): 614–33.
https://doi.org/10.1109/TKDE.2021.3079836.
Wang, Lijing, Jiangzhuo Chen, and Madhav Marathe. 2020.
“TDEFSI: Theory-guided Deep Learning-based Epidemic Forecasting with Synthetic Information.” ACM Transactions on Spatial Algorithms and Systems 6 (3): 15:1–39.
https://doi.org/10.1145/3380971.
Willard, Jared, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. 2022.
“Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems.” ACM Computing Surveys, March, 3514228.
https://doi.org/10.1145/3514228.
Zampieri, Guido, Supreeta Vijayakumar, Elisabeth Yaneske, and Claudio Angione. 2019.
“Machine and Deep Learning Meet Genome-Scale Metabolic Modeling.” PLOS Computational Biology 15 (7): e1007084.
https://doi.org/10.1371/journal.pcbi.1007084.
Social Network Model of Influence