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1 Home

Introduction

If you are reading this, it is because you know that networks are everywhere. Network science
is a rapidly growing field that has been applied to many different disciplines, from biology
to sociology, from computer science to physics. In this course, we will go over advanced
network science topics; particularly, statistical inference in networks. The course contents
are:

• Overview of statistical inference.

• Introduction to network science inference.

• Motif detection.

• Global statistics (e.g., modularity).

• Random graphs (static).

• Random graphs (dynamic).

• Coevolution of networks and behavior.

• Advanced topics (sampling and conditional models).

About the author

Dr. George G. Vega Yon is an Assistant Professor of Research at the Division of Epidemiology
at the University of Utah and a Lead Scientist at Booz Allen Hamilton. He studies Complex
Systems using Statistical Computing. George has over ten years of experience developing
scientific software focusing on high-performance computing, data visualization, and social
network analysis. His training is in Public Policy (M.A. UAI, 2011), Economics (M.Sc.
Caltech, 2015), and Biostatistics (Ph.D. USC, 2020).

Dr. Vega Yon obtained his Ph.D. in Biostatistics under the supervision of Prof. Paul Marjo-
ram and Prof. Kayla de la Haye, with his dissertation titled “Essays on Bioinformatics and
Social Network Analysis: Statistical and Computational Methods for Complex Systems.”
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Disclaimer

This is an ongoing project. The course is being developed and will be updated as we go. If
you have any comments or suggestions, please let me know. The generation of the course
materials was assisted by AI tools, namely, GitHub copilot.

Code of Conduct

Please note that the networks-udd2024 project is released with a Contributor Code of Con-
duct. By contributing to this project, you agree to abide by its terms.

6

https://contributor-covenant.org/version/2/1/CODE_OF_CONDUCT.html
https://contributor-covenant.org/version/2/1/CODE_OF_CONDUCT.html


Part I

Day 1
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2 Overview

Before jumping into network science details, we need to cover some fundamentals. I assume
that most of the contents here are well known to you–we will be brief–but I want to ensure
we are all on the same page.

2.1 Programming with R

The R programming language (R Core Team 2023) is the defacto language for social network
analysis1. Furthermore, R homes the most comprehensive collection of packages implement-
ing the methods we will cover here. Let’s start by the fundamentals

2.2 Getting help

Unlike other languages, R’s documentation is highly reliable. The Comprehensive R Archive
Network [CRAN] is the official repository of R packages. All packages posted on CRAN
must pass a series of tests to ensure the quality of the code, including the documentation.

To get help on a function, we can use the help() function. For example, if we wanted to get
help on the mean() function, we would do:

help("mean")

2.3 Naming conventions

R has a set of naming conventions that we should follow to avoid confusion. The most
important ones are:

• Use lowercase letters (optional)
• Use underscores to separate words (optional)
• Do not start with a number
• Do not use special characters

1Although, not for network science in general.
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• Do not use reserved words

Question
Of the following list, which are valid names and which are valid but to be avoided?

_my.var
my.var
my_var
myVar
myVar1
1myVar
my var
my-var

2.4 Assignment

In R, we have two (four) ways of assigning values to objects: the <- and = binary operators2.
Although both are equivalent, the former is the preferred way of assigning values to objects
since the latter can be confused with function arguments.

x <- 1
x = 1

Question
What is the difference between the following two assignments? Use the help function
to find out.

x <- 1
x <<- 1

Question
What are other ways in which you can assign values to objects?

2In mathematics and computer science, a binary operator is a function that takes two arguments. In R,
binary operators are implemented as variable 1 [operator] variable 2. For example, 1 + 2 is a
binary operation.
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2.5 Using functions and piping

In R, we use functions to perform operations on objects. Functions are implemented as
function_name ( argument_1 , argument_2 , ... ). For example, the mean() function
takes a vector of numbers and returns the mean of the values:

x <- c(1, 2, 3) # The c() function creates a vector
mean(x)
## [1] 2

Furthermore, we can use the pipe operator (|>) to improve readability. The pipe operator
takes the output of the left-hand side expression and passes it as the first argument of the
right-hand side expression. Our previous example could be rewritten as:

c(1, 2, 3) |> mean()
## [1] 2

2.6 Data structures

Atomic types are the minimal building blocks of R. They are logical, integer, double, char-
acter, complex, raw:

x_logical <- TRUE
x_integer <- 1L
x_double <- 1.0
x_character <- "a"
x_complex <- 1i
x_raw <- charToRaw("a")

Unlike other languages, we do not need to declare the data type before creating the object;
R will infer it from the value.

Pro-tip
Adding the L suffix to the value is good practice when dealing with integers. Some R
packages like data.table (Barrett, Dowle, and Srinivasan 2023) have internal checks
that will throw an error if you are not explicit about the data type.

The next type is the vector. A vector is a collection of elements of the same type. The most
common way to create a vector is with the c() function:
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x_integer <- c(1, 2, 3)
x_double <- c(1.0, 2.0, 3.0)
x_logical <- c(TRUE, FALSE, TRUE)
## etc.

R will coerce the data types to the most general type. For example, if we mix integers and
doubles, R will coerce the integers into doubles. The coercion order is logical < integer <
double < character

Question
Why is the coercion order logical < integer < double < character?

The next data structure is the list. A list is a collection of elements of any type. We can
create a list with the list() function:

x_list <- list(1, 2.0, TRUE, "a")
x_list_named <- list(a = 1, b = 2.0, c = TRUE, d = "a")

To access elements in a list, we have two options: by position or by name, the latter only if
the elements are named:

x_list[[1]]
## [1] 1
x_list_named[["a"]]
## [1] 1
x_list_named$a
## [1] 1

After lists, we have matrices. A matrix is a collection of elements of the same type arranged
in a two-dimensional grid. We can create a matrix with the matrix() function:

x_matrix <- matrix(1:9, nrow = 3, ncol = 3)
x_matrix
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9

## We can access elements in a matrix by row column, or position:
x_matrix[1, 2]
## [1] 4
x_matrix[cbind(1, 2)]
## [1] 4
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x_matrix[4]
## [1] 4

Matrix is a vector
Matrices in R are vectors with dimensions. In base R, matrices are stored in column-
major order. This means that the elements are stored column by column. This is
important to know when we are accessing elements in a matrix

The two last data structures are arrays and data frames. An array is a collection of elements
of the same type arranged in a multi-dimensional grid. We can create an array with the
array() function:

x_array <- array(1:27, dim = c(3, 3, 3))

## We can access elements in an array by row, column, and dimension, or
## position:
x_array[1, 2, 3]
## [1] 22
x_array[cbind(1, 2, 3)]
## [1] 22
x_array[22]
## [1] 22

Data frames are the most common data structure in R. In principle, these objects are lists
of vectors of the same length, each vector representing a column. Columns (lists) in data
frames can be of different types, but elements in each column must be of the same type. We
can create a data frame with the data.frame() function:

x_data_frame <- data.frame(
a = 1:3,
b = c("a", "b", "c"),
c = c(TRUE, FALSE, TRUE)

)

## We can access elements in a data frame by row, column, or position:
x_data_frame[1, 2]
## [1] "a"
x_data_frame[cbind(1, 2)]
## [1] "a"
x_data_frame$b[1] # Like a list
## [1] "a"
x_data_frame[[2]][1] # Like a list too
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## [1] "a"

2.7 Functions

Functions are the most important building blocks of R. A function is a set of instructions
that takes one or more inputs and returns one or more outputs. We can create a function
with the function() function:

## This function has two arguments (y is optional)
f <- function(x, y = 1) {

x + 1
}

f(1)
## [1] 2

Starting with R 4, we can use the lambda syntax to create functions:

f <- \(x, y) x + 1

f(1)
## [1] 2

2.8 Control flow

Control flow statements allow us to control the execution of the code. The most common
control flow statements are if, for, while, and repeat. We can create a control flow
statement with the if(), for(), while(), and repeat() functions:

## if
if (TRUE) {

"a"
} else {

"b"
}
## [1] "a"

## for
for (i in 1:3) {
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cat("This is the number ", i, "\n")
}
## This is the number 1
## This is the number 2
## This is the number 3

## while
i <- 1
while (i <= 3) {

cat("This is the number ", i, "\n")
i <- i + 1

}
## This is the number 1
## This is the number 2
## This is the number 3

## repeat
i <- 1
repeat {

cat("This is the number ", i, "\n")
i <- i + 1
if (i > 3) {
break

}
}
## This is the number 1
## This is the number 2
## This is the number 3

2.9 R packages

R is so powerful because of its extensions. R extensions (different from other programming
languages) are called packages. Packages are collections of functions, data, and documenta-
tion that provide additional functionality to R. Although anyone can create and distribute
R packages to other users, the Comprehensive R Archive Network [CRAN] is the official
repository of R packages. All packages posted on CRAN are thoroughly tested, so generally,
their quality is high.

To install R packages, we use the install.packages() function; to load them, we use the
library() function. For example, the following code chunk installs the ergm package and
loads it:

14



install.packages("ergm")
library(ergm)

2.10 Statistics

Generally, statistics are used for two purposes: to describe and to infer. We observe data
samples in descriptive statistics, recording and reporting the mean, median, and standard
deviation, among other statistics. Statistical inference, on the other hand, is used to infer
the properties of a population from a sample, particularly, about population parameters.

Figure 2.1: Grad view of statistics – Reproduced from “1.1: Basic Definitions and Concepts”
(2014)

From the perspective of network science, descriptive statistics are used to describe the prop-
erties of a network, such as the number of nodes and edges, the degree distribution, the
clustering coefficient, etc. Statistical inference in network science has to do with addressing
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questions about the underlying properties of networked systems; some questions include the
following:

• Are two networks different?
• Is the number of observed triangles in a network higher than expected by chance?
• Are individuals in a network more likely to be connected to individuals with similar

characteristics?
• etc.

Part of statistical inference is hypothesis testing.

2.11 Hypothesis testing

According to Wikipedia

A statistical hypothesis test is a method of statistical inference used to decide
whether the data at hand sufficiently support a particular hypothesis. More
generally, hypothesis testing allows us to make probabilistic statements about
population parameters. More informally, hypothesis testing is the processes of
making decisions under uncertainty. Typically, hypothesis testing procedures
involve a user selected tradeoff between false positives and false negatives. –
Wiki

In a nutshell, hypothesis testing is performed by following these steps:

1. State the null and alternative hypotheses. In general, the null hypothesis is a statement
about the population parameter that challenges our research question; for example,
given the question of whether two networks are different, the null hypothesis would be
that the two networks are the same.

2. Compute the corresponding test statistic. It is a data function that reduces the infor-
mation to a single number.

3. Compare the observed test statistic with the distribution of the test statistic under the
null hypothesis. The sometimes infamous p-value: “[…] the probability that the chosen
test statistic would have been at least as large as its observed value if every model
assumption were correct, including the test hypothesis.’ ’ (Greenland et al. 2016)
3

4. Report the observed effect and p-value, i.e., Pr(𝑡 ∈ 𝐻0)

3The discussion about interpreting p-values and hypothesis testing is vast and relevant. Although we will
not review this here, I recommend looking into the work of Andrew Gelman Gelman (2018).
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We usually say that we either reject the null hypothesis or fail to reject it (we never accept
the null hypothesis,) but, in my view, it is always better to talk about it in terms of “suggests
evidence for” or “suggests evidence against.”

We will illustrate statistical concepts more concretely in the next section.

2.12 Statistical programming

Statistical programming (or computing) is the science of leveraging modern computing power
to solve statistical problems. The R programming language is the defacto language for
statistical programming, and so it has an extensive collection of packages implementing
statistical methods and functions.

2.13 Probability distributions

R has a standard way of naming probability functions. The naming structure is [type of
function][distribution], where [type of function] can be d for density, p for cumula-
tive distribution function, q for quantile function, and r for random generation. For example,
the normal distribution has the following functions:

dnorm(0, mean = 0, sd = 1)
## [1] 0.3989423
pnorm(0, mean = 0, sd = 1)
## [1] 0.5
qnorm(0.5, mean = 0, sd = 1)
## [1] 0

Now, if we wanted to know what is the probability of observing a value smaller than -2
comming from a standard normal distribution, we would do:

pnorm(-2, mean = 0, sd = 1)
## [1] 0.02275013

Currently, R has a wide range of probability distributions implemented.

Question
How many probability distributions are implemented in R’s stats package?

17



2.14 Random number generation

Random numbers, and more precisely, pseudo-random numbers, are a vital component of
statistical programming. Pure randomness is hard to come by, and so we rely on pseudo-
random number generators (PRNGs) to generate random numbers. These generators are
deterministic algorithms that produce sequences of numbers we can then use to generate
random samples from probability distributions. Because of the latter, PRNGs need a starting
point called the seed. As a statistical computing program, R has a variety of PRNGs. As
suggested in the previous subsection, we can generate random numbers from a probability
distribution with the r function. In what follows, we will draw random numbers from a few
distributions and plot histograms of the results:

set.seed(1)

## Saving the current graphical parameters
op <- par(mfrow = c(2,2))
rnorm(1000) |> hist(main = "Normal distribution")
runif(1000) |> hist(main = "Uniform distribution")
rpois(1000, lambda = 1) |> hist(main = "Poisson distribution")
rbinom(1000, size = 10, prob = 0.1) |> hist(main = "Binomial distribution")
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rbinom(1000, size = 10, prob = 0.1)
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par(op)
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2.15 Simulations and sampling

Simulations are front and center in statistical programming. We can use them to test the
properties of statistical methods, generate data, and perform statistical inference. The fol-
lowing example uses the sample function in R to compute the bootstrap standard error of
the mean (see Casella and Berger 2021):

set.seed(1)
x <- rnorm(1000)

## Bootstrap standard error of the mean
n <- length(x)
B <- 1000

## We will store the results in a vector
res <- numeric(B)

for (i in 1:B) {
# Sample with replacement
res[i] <- sample(x, size = n, replace = TRUE) |>
mean()

}

## Plot the results
hist(res, main = "Bootstrap standard error of the mean")

Bootstrap standard error of the mean

res
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−0.10 −0.05 0.00 0.05 0.10

0
50

15
0

25
0

Since the previous example is rather extensive, let us review it in detail.
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• set.seed(1) sets the seed of the PRNG to 1. It ensures we get the same results every
time we run the code.

• rnorm() generates a sample of 1,000 standard-normal values.

• n <- length(x) stores the length of the vector in the n variable.

• B <- 1000 stores the number of bootstrap samples in the B variable.

• res <- numeric(B) creates a vector of length B to store the results.

• for (i in 1:B) is a for loop that iterates from 1 to B.

• res[i] <- sample(x, size = n, replace = TRUE) |> mean() samples n values
from x with replacement and computes the mean of the sample.

• The pipe operator (|>) passes the output of the left-hand side expression as the first
argument of the right-hand side expression.

• hist(res, main = "Bootstrap standard error of the mean") plots the his-
togram of the results.
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3 Random graphs

3.1 Introduction

In this section, we will focus on reviewing the most common random graph models, how
these are used, and what things are important to consider when using them. Later on in the
course, we will focus on Exponential-Family Random Graph Models [ERGMs], which are a
generalization of the models we will discuss here.

3.2 Erdős–Rényi model

The Erdős–Rényi model is the simplest random graph model. It is defined by two parameters:
𝑛 and 𝑝. The parameter 𝑛 is the number of nodes in the graph, and 𝑝 is the probability that
any two nodes are connected by an edge. The model is named after Paul Erdős and Alfréd
Rényi, who first introduced it in 1959.

Formally, we can describe the ER model as follows: (𝑉 , 𝐸) where 𝑉 = {1, … , 𝑛} and 𝐸 is a
set of edges, where each edge is included with probability 𝑝.

Tip

Computing note: In the case of large networks, sampling ER graphs can be done
effectively in a two-step process. First, we sample the number of edges in the graph
from a binomial distribution. Then, we sample the edges uniformly at random from
the set of all possible edges. This is much more efficient than sampling each edge
independently since the number of possible edges is much smaller than the number of
possible graphs.

Most of the time, the ER is used as a reference distribution for studying real-world networks.
Nevertheless, using the ER model as a null model for a real-world network is not always a
good idea, as it may inflate the type two error rate.

21



3.2.1 Code example

## Model parameters
n <- 40
p <- 0.1

## Generating the graph, version 1
set.seed(3312)
g <- matrix(as.integer(runif(n * n) < p), nrow = n, ncol = n)
diag(g) <- 0

## Visualizing the network
library(igraph)
library(netplot)
nplot(graph_from_adjacency_matrix(g))

3.3 Watts-Strogatz model

The second model in our list is the small-world model, introduced by Duncan Watts and
Steven Strogatz in 1998. The model is defined by three parameters: 𝑛, 𝑘, and 𝑝. The
parameter 𝑛 is the number of nodes in the graph, 𝑘 is the number of neighbors each node
is connected to, and 𝑝 is the probability that an edge is rewired. As its name suggests,
the networks sampled from this model hold the small-world property, which means that the
average distance between any two nodes is small.
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Networks from the WS model are generated as follows:

1. Start with a ring of 𝑛 nodes, where each node is connected to its 𝑘 nearest neighbors.

2. For each edge (𝑢, 𝑣), rewire it with probability 𝑝 by replacing it with a random edge
(𝑢, 𝑤), where 𝑤 is chosen uniformly at random from the set of all nodes.

Challenge: How would you generate a WS graph using the two-step process described
above?

3.3.1 Code example

## Creating a ring
n <- 10
V <- 1:n
k <- 3
p <- .2

E <- NULL
for (i in 1:k) {

E <- rbind(E, cbind(V, c(V[-c(1:i)], V[1:i])))
}

## Generating the ring layout
lo <- layout_in_circle(graph_from_edgelist(E))

## Plotting with netplot
nplot(

graph_from_edgelist(E),
layout = lo
)
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## Rewiring
ids <- which(runif(nrow(E)) < p)
E[ids, 2] <- sample(V, length(ids), replace = TRUE)
nplot(

graph_from_edgelist(E),
layout = lo
)
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3.4 Scale-free networks

Scale-free networks are networks where the degree distribution follows a power-law distribu-
tion. The power-law distribution is a heavy-tailed distribution, which means that it has a
long tail of high-degree nodes. The power-law distribution is defined as follows:

𝑝(𝑘) = 𝐶𝑘−𝛾

where 𝐶 is a normalization constant and 𝛾 is the power-law exponent. The power-law
exponent is usually between 2 and 3, but it can be any value larger than 2. The power-law
distribution is a special case of the more general class of distributions called the Pareto
distribution.

Scale-free networks are generated using the Barabási–Albert model, which was introduced by
Albert-László Barabási and Réka Albert in 1999. The model is defined by two parameters:
𝑛 and 𝑚. The parameter 𝑛 is the number of nodes in the graph, and 𝑚 is the number of
edges added at each time step. The model is generated as follows:

1. Start with a graph of 𝑚 nodes, where each node is connected to all other nodes.

2. At each time step, add a new node to the graph and connect it to 𝑚 existing nodes.
The probability that a new node is connected to an existing node 𝑖 is proportional to
the degree of 𝑖.

3.4.1 Code example

## Model parameters
n <- 500
m <- 2

## Generating the graph
set.seed(3312)
g <- matrix(0, nrow = n, ncol = n)
g[1:m, 1:m] <- 1
diag(g) <- 0

## Adding nodes
for (i in (m + 1):n) {

# Selecting the nodes to connect to
ids <- sample(
x = 1:(i-1), # Up to i-1
size = m, # m nodes
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replace = FALSE, # No replacement
# Probability proportional to the degree
prob = colSums(g[, 1:(i-1), drop = FALSE])
)

# Adding the edges
g[i, ids] <- 1
g[ids, i] <- 1

}

## Visualizing the degree distribution
library(ggplot2)
data.frame(degree = colSums(g)) |>

ggplot(aes(degree)) +
geom_histogram() +
scale_x_log10() +
labs(
x = "Degree\n(log10 scale)",
y = "Count"

)
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4 Motif discovery

One important application of random graphs is motif discovery. The principle is simple: we
can use random graphs to generate null distributions of observed statistics/motifs. Usually
the process is as follows:

1. Compute the desired set of motifs to assess, for instance, number of triangles, 4 cycles,
etc.

2. Using one of the random graph models, generate a null distribution of networks similar
to the observed graph. This is important, as the null must be relevant to the case.
At minimum, must have the same density of the observed graph.

3. For each random graph in the null, compute the same vector of statistics/motifs, and
use that as a benchmark to assess the relative prevalence of the network.

Rewiring algorithms

One of the most common ways of generating random graphs is using degree sequence pre-
serving algorithm. Implementations of this can be found in netdiffuseR and igraph.

4.1 Code example

# Loading the R package
library(netdiffuseR)

# A graph with known structure (see Milo 2004)
n <- 5
x <- matrix(0, ncol=n, nrow=n)
x <- as(x, "dgCMatrix")
x[1,c(-1,-n)] <- 1
x[c(-1,-n),n] <- 1
x

5 x 5 sparse Matrix of class "dgCMatrix"
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[1,] . 1 1 1 .
[2,] . . . . 1
[3,] . . . . 1
[4,] . . . . 1
[5,] . . . . .

# Simulations (increase the number for more precision)
set.seed(8612)
nsim <- 1e4
w <- sapply(seq_len(nsim), function(y) {
# Creating the new graph
g <- rewire_graph(x,p=nlinks(x)*100, algorithm = "swap")
# Categorizing (tag of the generated structure)
paste0(as.vector(g), collapse="")

})
# Counting
coded <- as.integer(as.factor(w))
plot(table(coded)/nsim*100, type="p", ylab="Frequency %", xlab="Class of graph", pch=3,
main="Distribution of classes generated by rewiring")

# Marking the original structure
baseline <- paste0(as.vector(x), collapse="")
points(x=7,y=table(as.factor(w))[baseline]/nsim*100, pch=3, col="red")
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5 Behavior and coevolution

5.1 Introduction

This section focuses on inference involving network and a secondary outcome. While there
are many ways of studying the coevolution or dependence between network and behavior,
this section focuses on two classes of analysis: When the network is fixed and when both
network and behavior influence each other.

Whether we treat the network as given or endogenous sets the complexity of conducting sta-
tistical inference. Data analysis becomes much more straightforward if our research focuses
on individual-level outcomes embedded in a network and not on the network itself. Here,
we will deal with three particular cases: (1) when network effects are lagged, (2) egocentric
networks, and (3) when network effects are contemporaneous.

5.2 Lagged exposure

If we assume that network influence in the form of exposure is lagged, we have one of the most
straightforward cases for network inference (Haye et al. 2019; Valente and Vega Yon 2020;
Valente, Wipfli, and Vega Yon 2019). Here, instead of dealing with convoluted statistical
models, the problem reduces to estimating a simple linear regression model. Generally,
lagged exposure effects look like this:

𝑦𝑖𝑡 = 𝜌 (∑
𝑗≠𝑖

𝑋𝑖𝑗)
−1

(∑
𝑗≠𝑖

𝑦𝑗𝑡−1𝑋𝑖𝑗) + 𝜃t𝑤𝑖 + 𝜀, 𝜀 ∼ N(0, 𝜎2)

where 𝑦𝑖𝑡 is the outcome of individual 𝑖 at time 𝑡, 𝑋𝑖𝑗 is the 𝑖𝑗-th entry of the adjacency
matrix, 𝜃 is a vector of coefficients, 𝑤𝑖 is a vector of features/covariates of individual 𝑖, and
𝜀𝑖 is a normally distributed error. Here, the key component is 𝜌: the coefficient associated
with the network exposure effect.

The exposure statistic, (∑𝑗≠𝑖 𝑋𝑖𝑗)
−1 (∑𝑗≠𝑖 𝑦𝑗𝑡−1𝑋𝑖𝑗), is the weighted average of 𝑖’s neigh-

bors’ outcomes at time 𝑡 − 1.
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5.3 Code example: Lagged exposure

The following code example shows how to estimate a lagged exposure effect using the glm
function in R. The model we will simulate and estimate features a Bernoulli graph with 1,000
nodes and a density of 0.01.

𝑦𝑖𝑡 = 𝜃1 + 𝜌Exposure𝑖𝑡 + 𝜃2𝑤𝑖 + 𝜀

where Exposure𝑖𝑡 is the exposure statistic defined above, and 𝑤𝑖 is a vector of covariates.

## Simulating data
n <- 1000
time <- 2
theta <- c(-1, 3)

## Sampling a bernoilli network
set.seed(3132)
p <- 0.01
X <- matrix(rbinom(n^2, 1, p), nrow = n)
diag(X) <- 0

## Covariate
W <- matrix(rnorm(n), nrow = n)

## Simulating the outcome
rho <- 0.5
Y0 <- cbind(rnorm(n))

## The lagged exposure
expo <- (X %*% Y0)/rowSums(X)
Y1 <- theta[1] + rho * expo + W * theta[2] + rnorm(n)

Now we fit the model using GLM, in this case, linear Regression

fit <- glm(Y1 ~ expo + W, family = "gaussian")
summary(fit)

Call:
glm(formula = Y1 ~ expo + W, family = "gaussian")

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) -1.07187 0.03284 -32.638 < 2e-16 ***
expo 0.61170 0.10199 5.998 2.8e-09 ***
W 3.00316 0.03233 92.891 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1.071489)

Null deviance: 10319.3 on 999 degrees of freedom
Residual deviance: 1068.3 on 997 degrees of freedom
AIC: 2911.9

Number of Fisher Scoring iterations: 2

5.4 Egocentric networks

Generally, when we use egocentric networks and egos’ outcomes, we are thinking in a model
where one observation is the pair (𝑦𝑖, 𝑋𝑖), this is, the outcome of individual 𝑖 and the
egocentric network of individual 𝑖. When such is the case, since (a) networks are independent
across egos and (b) the networks are fixed, like the previous case, a simple linear regression
model is enough to conduct the analyses. A typical model looks like this:

𝑦 = 𝜃t
𝑥𝑠(𝑋) + 𝜃t𝑤 + 𝜀, 𝜀 ∼ N(0, 𝜎2)

Where 𝑦 is a vector of outcomes, 𝑋 is a matrix of egocentric networks, 𝑤 is a vector of
covariates, 𝜃 is a vector of coefficients, and 𝜀 is a vector of errors. The key component here
is 𝑠(𝑋), which is a vector of sufficient statistics of the egocentric networks. For example, if
we are interested in the number of ties, 𝑠(𝑋) is a vector of the number of ties of each ego.

5.5 Code example: Egocentric networks

For this example, we will simulate a stream of 1,000 Bernoulli graphs looking into the
probability of school dropout. Each network will have between 4 and 10 nodes and have
a density of 0.4. The data-generating process is as follows:

Pr 𝜃 (𝑌𝑖 = 1) = logit−1 (𝜃𝑥𝑠(𝑋𝑖))

Where 𝑠(𝑋) ≡ (density, n mutual ties), and 𝜃𝑥 = (0.5, −1). This model only features suffi-
cient statistics. We start by simulating the networks
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set.seed(331)
n <- 1000
sizes <- sample(4:10, n, replace = TRUE)

## Simulating the networks
X <- lapply(sizes, function(x) matrix(rbinom(x^2, 1, 0.4), nrow = x))
X <- lapply(X, \(x) {diag(x) <- 0; x})

## Inspecting the first 5
head(X, 5)

[[1]]
[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 1 1 0
[2,] 0 0 0 0 0
[3,] 0 1 0 0 0
[4,] 0 0 0 0 0
[5,] 1 0 0 1 0

[[2]]
[,1] [,2] [,3] [,4]

[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
[4,] 1 0 1 0

[[3]]
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 1 0 1 0 0
[2,] 0 0 0 0 0 0
[3,] 0 1 0 0 0 1
[4,] 0 0 0 0 1 0
[5,] 0 0 0 0 0 0
[6,] 0 0 0 0 0 0

[[4]]
[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 0 1 0
[2,] 0 0 0 0 1
[3,] 0 1 0 0 0
[4,] 0 1 1 0 1
[5,] 1 0 1 0 0
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[[5]]
[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 0 0
[2,] 1 0 0 0 0
[3,] 1 0 0 0 0
[4,] 0 0 0 0 0
[5,] 1 0 0 0 0

Using the ergm R package (Handcock et al. 2023; Hunter et al. 2008), we can extract the
associated sufficient statistics of the egocentric networks:

library(ergm)
stats <- lapply(X, \(x) summary_formula(x ~ density + mutual))

## Turning the list into a matrix
stats <- do.call(rbind, stats)

## Inspecting the first 5
head(stats, 5)

density mutual
[1,] 0.3000000 0
[2,] 0.1666667 0
[3,] 0.1666667 0
[4,] 0.4500000 0
[5,] 0.1500000 0

We now simulate the outcomes

y <- rbinom(n, 1, plogis(stats %*% c(0.5, -1)))
glm(y ~ stats, family = binomial(link = "logit")) |>

summary()

Call:
glm(formula = y ~ stats, family = binomial(link = "logit"))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.07319 0.41590 0.176 0.860
statsdensity 0.42568 1.26942 0.335 0.737
statsmutual -1.14804 0.12166 -9.436 <2e-16 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 768.96 on 999 degrees of freedom
Residual deviance: 518.78 on 997 degrees of freedom
AIC: 524.78

Number of Fisher Scoring iterations: 7

5.6 Network effects are endogenous

Here we have two different approaches: Spatial Autocorrelation [SAR], and Autologistic
actor attribute model [ALAAM] (Robins, Pattison, and Elliott 2001). The first one is a gen-
eralization of the linear regression model that accounts for spatial dependence. The second
is a close relative of ERGMs that treats covariates as endogenous and network as exogenous.
Overall, ALAAMs are more flexible than SARs, but SARs are easier to estimate.

SAR Formally, SAR models (see LeSage 2008) can be used to estimate network exposure
effects. The general form is:

𝑦 = 𝜌𝑊𝑦 + 𝜃t𝑋 + 𝜖, 𝜖 ∼ MVN(0, Σ)

where 𝑦 ≡ {𝑦𝑖} is a vector of outcomes the outcome, 𝜌 is an autocorrelation coefficient,
𝑊 ∈ {𝑤𝑖𝑗} is a row-stochastic square matrix of size 𝑛, 𝜃 is a vector of model parameters,
𝑋 is the corresponding matrix with exogenous variables, and 𝜖 is a vector of errors that
distributes multivariate normal with mean 0 and covariance makeΣ.[^notation] The SAR
model is a generalization of the linear regression model that accounts for spatial dependence.
The SAR model can be estimated using the spatialreg package in R (Roger Bivand 2022).

Tip

What is the appropriate network to use in the SAR model? According to LeSage and
Pace (2014), it is not very important. Since (𝐼𝑛 − 𝜌W)−1 = 𝜌W + 𝜌2W2 + ….

Although the SAR model was developed for spatial data, it is easy to apply it to network
data. Furthermore, each entry of the vector 𝑊𝑦 has the same definition as network exposure,
namely

𝑊𝑦 ≡ {∑
𝑗

𝑦𝑗𝑤𝑖𝑗}
𝑖

34



Since 𝑊 is row-stochastic, 𝑊𝑦 is a weighted average of the outcome of the neighbors of 𝑖,
i.e., a vector of network exposures.

ALAAM The simplest way we can think of this class of models is as if a given covariate
switched places with the network in an ERGM, so the network is now fixed and the covariate
is the random variable. While ALAAMs can also estimate network exposure effects, we can
use them to build more complex models beyond exposure. The general form is:

Pr (𝑌 = 𝑦|𝑊, 𝑋) = exp (𝜃t𝑠(𝑦, 𝑊, 𝑋)) × 𝜂(𝜃)−1

𝜂(𝜃) = ∑
𝑦

exp (𝜃t𝑠(𝑦, 𝑊, 𝑋))

Where 𝑌 ≡ {𝑦𝑖 ∈ (0, 1)} is a vector of binary individual outcomes, 𝑊 denotes the social
network, 𝑋 is a matrix of exogenous variables, 𝜃 is a vector of model parameters, 𝑠(𝑦, 𝑊, 𝑋)
is a vector of sufficient statistics, and 𝜂(𝜃) is a normalizing constant.

5.7 Code example: SAR

Simulation of SAR models can be done using the following observation: Although the out-
come shows on both sides of the equation, we can isolate it in one side and solve for it;
formally:

𝑦 = 𝜌𝑋𝑦 + 𝜃t𝑊 + 𝜀 ⟹ 𝑦 = (𝐼 − 𝜌𝑋)−1 𝜃t𝑊 + (𝐼 − 𝜌𝑋)−1 𝜀

The following code chunk simulates a SAR model with a Bernoulli graph with 1,000 nodes
and a density of 0.01. The data-generating process is as follows:

set.seed(4114)
n <- 1000

## Simulating the network
p <- 0.01
X <- matrix(rbinom(n^2, 1, p), nrow = n)

## Covariate
W <- matrix(rnorm(n), nrow = n)

## Simulating the outcome
rho <- 0.5
library(MASS) # For the mvrnorm function
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## Identity minus rho * X
X_rowstoch <- X / rowSums(X)
I <- diag(n) - rho * X_rowstoch

## The outcome
Y <- solve(I) %*% (2 * W) + solve(I) %*% mvrnorm(1, rep(0, n), diag(n))

Using the spatialreg R package, we can fit the model using the lagsarlm function:

library(spdep) # for the function mat2listw
library(spatialreg)
fit <- lagsarlm(

Y ~ W,
data = as.data.frame(X),
listw = mat2listw(X_rowstoch)
)

## Using texreg to get a pretty print
texreg::screenreg(fit, single.row = TRUE)

========================================
Model 1

----------------------------------------
(Intercept) -0.01 (0.03)
W 1.97 (0.03) ***
rho 0.54 (0.04) ***
----------------------------------------
Num. obs. 1000
Parameters 4
Log Likelihood -1373.02
AIC (Linear model) 2920.37
AIC (Spatial model) 2754.05
LR test: statistic 168.32
LR test: p-value 0.00
========================================
*** p < 0.001; ** p < 0.01; * p < 0.05

The interpretation of this model is almost the same as a linear regression, with the difference
that we have the autocorrelation effect (rho). As expected, the model got an estimate close
enough to the population parameter: 𝜌 = 0.5.
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5.8 Code example: ALAAM

To date, there is no R package implementing the ALAAM framework. Nevertheless, you can
fit ALAAMs using the PNet software developed by the Melnet group at the University of
Melbourne (click here).

Because of the similarities, ALAAMs can be implemented using ERGMs. Because of the
novelty of it, the coding example will be left as a potential class project. We will post a
fully-featured example after the workshop.

5.9 Coevolution

Finally, we discuss coevolution when both network and behavior are embedded in a feedback
loop. Coevolution should be the default assumption when dealing with social networks. Nev-
ertheless, models capable of capturing coevolution are hard to estimate. Here, we will discuss
two of such models: Stochastic Actor-Oriented Models (or Siena Models) (first introduced in
T. a. B. Snijders (1996); see also Tom A. B. Snijders (2017)) and Exponential-family Ran-
dom Exponential-family Random Network Models [ERNMs,] a generalization of ERGMs
(Wang, Fellows, and Handcock 2023; Fellows 2012).

Siena Stochastic Actor-Oriented Models [SOAMs] or Siena Models are dynamic models of
network and behavior that describe the transition of a network system within two or more
time points.

ERNMs This model is closely related to ERGMs, with the difference that they incorporate
a vertex-level output. Conceptually, it is moving from a having a random network, to a
model where a given vertex feature and network are random:

𝑃𝒴,𝜃(𝑌 = 𝑦|𝑋 = 𝑥) → 𝑃𝒴,𝜃(𝑌 = 𝑦, 𝑋 = 𝑥)

5.10 Code example: Siena

This example was adapted from the RSiena R package (see ?sienaGOF-auxiliary page).We
start by loading the package and taking a look at the data we will use:

library(RSiena)

## Visualizing the adjacency matrix & behavior
op <- par(mfrow=c(2, 2))
image(s501, main = "Net: s501")
image(s502, main = "Net: s502")
hist(s50a[,1], main = "Beh1")
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hist(s50a[,2], main = "Beh2")
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par(op)

The next step is the data preparation process. RSiena does not receive raw data as is. We
need to explicitly declare the networks and outcome variable. Siena models can also model
network changes

## Initializing the dependent variable (network)
mynet1 <- sienaDependent(array(c(s501, s502), dim=c(50, 50, 2)))
mynet1

Type oneMode
Observations 2
Nodeset Actors (50 elements)

mybeh <- sienaDependent(s50a[,1:2], type="behavior")
mybeh

Type behavior
Observations 2
Nodeset Actors (50 elements)
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## Node-level covariates (artificial)
mycov <- c(rep(1:3,16),1,2)

## Edge-level covariates (also artificial)
mydycov <- matrix(rep(1:5, 500), 50, 50)

## Creating the data object
mydata <- sienaDataCreate(mynet1, mybeh)

## Adding the effects (first get them!)
myeff <- getEffects(mydata)

## Notice that Siena adds some default effects
myeff
## name effectName include fix test initialValue parm
## 1 mynet1 basic rate parameter mynet1 TRUE FALSE FALSE 4.69604 0
## 2 mynet1 outdegree (density) TRUE FALSE FALSE -1.48852 0
## 3 mynet1 reciprocity TRUE FALSE FALSE 0.00000 0
## 4 mybeh rate mybeh period 1 TRUE FALSE FALSE 0.70571 0
## 5 mybeh mybeh linear shape TRUE FALSE FALSE 0.32247 0
## 6 mybeh mybeh quadratic shape TRUE FALSE FALSE 0.00000 0

## Adding a few extra effects (automatically prints them out)
myeff <- includeEffects(myeff, transTies, cycle3)
## effectName include fix test initialValue parm
## 1 3-cycles TRUE FALSE FALSE 0 0
## 2 transitive ties TRUE FALSE FALSE 0 0

To add more effects, first, call the function effectsDocumentation(myeff). It will show
you explicitly how to add a particular effect. For instance, if we wanted to add network
exposure (avExposure,) under the documentation of effectsDocumentation(myeff) we
need to pass the following arguments:

## And now, exposure effect
myeff <- includeEffects(

myeff,
avExposure,
# These last three are specified by effectsDocum...
name = "mybeh",
interaction1 = "mynet1",
type = "rate"
)
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effectName include fix test initialValue parm
1 average exposure effect on rate mybeh TRUE FALSE FALSE 0 0

The next step involves creating the model with (sienaAlgorithmCreate,) where we specify
all the parameters for fitting the model (e.g., MCMC steps.) Here, we modified the values
of n3 and nsub to half of the default values to reduce the time it would take to fit the model;
yet this degrades the quality of the fit.

## Shorter phases 2 and 3, just for example:
myalgorithm <- sienaAlgorithmCreate(

nsub = 2, n3 = 500, seed = 122, projname = NULL
)

## If you use this algorithm object, siena07 will create/use an output file Siena.txt .

## Fitting and printing the model
ans <- siena07(

myalgorithm,
data = mydata, effects = myeff,
returnDeps = TRUE, batch = TRUE
)

##
## Start phase 0
## theta: 4.696 -1.489 0.000 0.000 0.000 0.706 0.000 0.322 0.000
##
## Start phase 1
## Phase 1 Iteration 1 Progress: 0%
## Phase 1 Iteration 2 Progress: 0%
## Phase 1 Iteration 3 Progress: 0%
## Phase 1 Iteration 4 Progress: 0%
## Phase 1 Iteration 5 Progress: 0%
## Phase 1 Iteration 10 Progress: 1%
## Phase 1 Iteration 15 Progress: 1%
## Phase 1 Iteration 20 Progress: 1%
## Phase 1 Iteration 25 Progress: 2%
## Phase 1 Iteration 30 Progress: 2%
## Phase 1 Iteration 35 Progress: 2%
## Phase 1 Iteration 40 Progress: 3%
## Phase 1 Iteration 45 Progress: 3%
## Phase 1 Iteration 50 Progress: 3%
## theta: 5.380 -1.734 0.481 0.147 0.166 1.168 -0.340 0.250 0.140
##
## Start phase 2.1
## Phase 2 Subphase 1 Iteration 1 Progress: 33%
## Phase 2 Subphase 1 Iteration 2 Progress: 33%
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## theta 6.044 -1.877 0.840 0.300 0.473 1.096 -0.332 0.112 0.191
## ac 0.375 -0.183 3.835 4.574 23.412 0.922 0.908 0.626 3.302
## Phase 2 Subphase 1 Iteration 3 Progress: 33%
## Phase 2 Subphase 1 Iteration 4 Progress: 33%
## theta 6.1075 -2.0372 1.2512 0.0341 0.5207 1.2593 -0.1534 0.3018 0.1928
## ac 0.9859 0.2280 -0.0703 -2.2973 -2.7455 1.1518 1.0749 0.8732 0.5399
## Phase 2 Subphase 1 Iteration 5 Progress: 33%
## Phase 2 Subphase 1 Iteration 6 Progress: 33%
## theta 6.8650 -2.3185 1.7577 0.2694 0.7636 1.1997 -0.0433 0.3000 0.1762
## ac 0.4789 0.4883 0.0199 -1.9449 -2.2609 1.1444 1.0397 0.9282 0.6470
## Phase 2 Subphase 1 Iteration 7 Progress: 33%
## Phase 2 Subphase 1 Iteration 8 Progress: 33%
## theta 6.801140 -2.485273 1.966471 0.301197 0.817324 1.228010 0.000627 0.377719 0.072274
## ac 0.4538 0.4933 -0.0158 -1.9326 -2.2588 1.1102 1.0395 0.9239 0.6905
## Phase 2 Subphase 1 Iteration 9 Progress: 33%
## Phase 2 Subphase 1 Iteration 10 Progress: 33%
## theta 6.1258 -2.5124 1.8704 0.1206 0.6054 1.4538 -0.0145 0.5091 -0.0671
## ac 0.472 0.103 -0.330 -1.625 -1.991 1.152 1.090 0.767 0.514
## Phase 2 Subphase 1 Iteration 1 Progress: 33%
## Phase 2 Subphase 1 Iteration 2 Progress: 33%
## Phase 2 Subphase 1 Iteration 3 Progress: 33%
## Phase 2 Subphase 1 Iteration 4 Progress: 33%
## Phase 2 Subphase 1 Iteration 5 Progress: 33%
## Phase 2 Subphase 1 Iteration 6 Progress: 34%
## Phase 2 Subphase 1 Iteration 7 Progress: 34%
## Phase 2 Subphase 1 Iteration 8 Progress: 34%
## Phase 2 Subphase 1 Iteration 9 Progress: 34%
## Phase 2 Subphase 1 Iteration 10 Progress: 34%
## theta 6.4976 -2.5900 1.9265 0.2750 0.8543 1.0420 0.0446 0.3234 -0.0686
## ac -0.212 -0.697 -0.818 -0.831 -0.765 -0.442 -0.268 -0.240 -0.267
## theta: 6.4976 -2.5900 1.9265 0.2750 0.8543 1.0420 0.0446 0.3234 -0.0686
##
## Start phase 2.2
## Phase 2 Subphase 2 Iteration 1 Progress: 48%
## Phase 2 Subphase 2 Iteration 2 Progress: 48%
## Phase 2 Subphase 2 Iteration 3 Progress: 48%
## Phase 2 Subphase 2 Iteration 4 Progress: 48%
## Phase 2 Subphase 2 Iteration 5 Progress: 48%
## Phase 2 Subphase 2 Iteration 6 Progress: 48%
## Phase 2 Subphase 2 Iteration 7 Progress: 49%
## Phase 2 Subphase 2 Iteration 8 Progress: 49%
## Phase 2 Subphase 2 Iteration 9 Progress: 49%
## Phase 2 Subphase 2 Iteration 10 Progress: 49%
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## theta 6.7988 -2.5810 1.9335 0.3941 0.7843 1.1111 0.0358 0.3252 -0.0415
## ac -0.0757 -0.3672 -0.4025 -0.3676 -0.4157 -0.0166 0.0222 -0.0874 0.0651
## theta: 6.7988 -2.5810 1.9335 0.3941 0.7843 1.1111 0.0358 0.3252 -0.0415
##
## Start phase 3
## Phase 3 Iteration 500 Progress 100%

ans
## Estimates, standard errors and convergence t-ratios
##
## Estimate Standard Convergence
## Error t-ratio
## Network Dynamics
## 1. rate basic rate parameter mynet1 6.7988 ( 1.2496 ) -0.0460
## 2. eval outdegree (density) -2.5810 ( 0.1505 ) 0.0113
## 3. eval reciprocity 1.9335 ( 0.2627 ) 0.0205
## 4. eval 3-cycles 0.3941 ( 0.2742 ) -0.0658
## 5. eval transitive ties 0.7843 ( 0.2379 ) -0.0014
##
## Behavior Dynamics
## 6. rate rate mybeh period 1 1.1111 ( 1.3096 ) -0.0199
## 7. rate average exposure effect on rate mybeh 0.0358 ( 0.4373 ) -0.0190
## 8. eval mybeh linear shape 0.3252 ( 0.2329 ) -0.0048
## 9. eval mybeh quadratic shape -0.0415 ( 0.1139 ) 0.0992
##
## Overall maximum convergence ratio: 0.2163
##
##
## Total of 940 iteration steps.

As a rule of thumb, absolute t-values below 0.1 show good convergence, below 0.2 we say
“reasonably well,” and above is no convergence. Let’s highlight two of the effects we have in
our model

1. Transitive ties (number five) are positive 0.78 with a t-value of smaller than 0.01.
Thus, we say that the network has a tendency towards transitivity (balance) that is
significant.

2. Exposure effect (number seven) is also positive, but small, 0.03, but still significant
(t-value of -0.01)

:Like with ERGMs, we also do goodness-of-fit:

sienaGOF(ans, OutdegreeDistribution, varName="mynet1") |>
plot()
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Goodness of Fit of OutdegreeDistribution

p: 0.584
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sienaGOF(ans, BehaviorDistribution, varName = "mybeh") |>
plot()

Note: some statistics are not plotted because their variance is 0.
This holds for the statistic: 5.

Goodness of Fit of BehaviorDistribution
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5.11 Code example: ERNM

To date, there is no CRAN release for the ERNM model. The only implementation I am
aware of is one of the leading authors, which is available on GitHub: https://github.com/f
ellstat/ernm. Unfortunately, the current version of the package seems to be broken.

Just like the ALAAM case, as ERNMs are closely related to ERGMS, building an example
using the ERGM package could be a great opportunity for a class project!
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6 Lab 1

6.1 Types of problems

1. Modeling with networks Of the following cases, which ones can be treated with
“regular statistical methods”? Justify your answers by identifying what is the unit of
analysis in your “regression”/“test” and specify whether the units are independent or
not.

a. Egocentric study 1: Analyze how the network structure affects health outcomes.

b. Egocentric study 2: Investigate what network structures are more prevalent in a pop-
ulation sample.

c. Egocentric study 3: Elucidate whether the prevalence of a given network structure is
higher in one population than in another.

d. Country-level networks: Analyze whether neighboring countries tend to adopt inter-
national treaties at the same time.

e. Phylogenomics: Study a given phenotype in a population of organisms related by a
phylogenetic tree.

6.2 Programming

1. Simulating convolutions: Using what you have learned about statistical functions
in R, simulate the convolution of two normal distributions, one with (𝜇, 𝜎2) = (−3, 1)
and the other with (𝜇, 𝜎2) = (2, 2). Plot the histogram of the results. Draw 1,000
samples.

2. Bimodal distribution: Using the previous two normal distributions, simulate a bi-
modal distribution where the probability of sampling from the first distribution is 0.3
and the probability of sampling from the second distribution is 0.7. Plot the histogram
of the results. (Hint: use a combination of runif() and ifelse()).
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6.3 Random graphs

1. Write a function to simulate Bernoulli graph, but instead of evaluating each (𝑖, 𝑗) tie
individually like in (er-code?), use a binomial random number to identify how many
edges the graph will have, and randomly pick which will those be from the set 𝑉 × 𝑉

2. Using a Generalized-Linear-Model [GLM], estimate the density parameter of the pre-
vious graph.
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7 Introduction to ERGMs

Have you ever wondered if the friend of your friend is your friend? Or if the people you
consider to be your friends feel the same about you? Or if age is related to whether you seek
advice from others? All these (and many others certainly more creative) questions can be
answered using Exponential-Family Random Graph Models.

7.1 Introduction

Exponential-Family Random Graph Models, known as ERGMs, ERG Models, or 𝑝∗ models
(Holland and Leinhardt (1981), Frank and Strauss (1986), Wasserman and Pattison (1996),
Tom A. B. Snijders et al. (2006), Robins et al. (2007), and many others) are a large family
of statistical distributions for random graphs. In ERGMs, the focus is on the processes that
give origin to the network rather than the individual ties.1

The most common representation of ERGMs is the following:

𝑃𝒴,𝜃(𝑌 = 𝑦) = exp (𝜃t𝑠(𝑦)) 𝜅(𝜃)−1

where 𝑌 is a random graph, 𝑦 ∈ 𝒴 is a particular realization of 𝑌 , 𝜃 is a vector of parameters,
𝑠(𝑦) is a vector of sufficient statistics, and 𝜅(𝜃) is a normalizing constant. The normalizing
constant is defined as:

𝜅(𝜃) = ∑
𝑦∈𝒴

exp (𝜃t𝑠(𝑦))

From the statistical point of view, the normalizing constant makes this model attractive; only
cases where 𝒴 is small enough to be enumerated are feasible (G. G. Vega Yon, Slaughter,
and Haye 2021). Because of that reason, estimating ERGMs is a challenging task.

In more simple terms, ERG models resemble Logistic regressions. The term 𝜃t𝑠(𝑦) is simply
the sum of the product between the parameters and the statistics (like you would see in
a Logistic regression,) and its key component is the composition of the vector of sufficient
statistics, 𝑠(𝑦). The latter is what defines the model.

1While ERG Models can be used to predict individual ties (which is another way of describing them), the
focus is on the processes that give origin to the network.
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The vector of sufficient statistics dictates the data-generating process of the network. Like
the mean and variance characterize the normal distribution, sufficient statistics (and corre-
sponding parameters) characterize the ERG distribution. Figure 7.1 shows some examples
of sufficient statistics with their corresponding parametrizations.

Figure 7.1: Example ERGM terms from G. G. Vega Yon, Slaughter, and Haye (2021)

The ergm package has many terms we can use to fit these models. You can explore the
available terms in the manual ergm.terms in the ergm package. Take a moment to explore
the manual and see the different terms available.

7.2 Dyadic independence (p1)

The simplest ERG model we can fit is a Bernoulli (Erdos-Renyi) model. Here, the only
statistic is the edgecount. Now, if we can write the function computing sufficient statistics
as a sum over all edges, i.e., 𝑠(𝑦) = ∑𝑖𝑗 𝑠′(𝑦𝑖𝑗), the model reduces to a Logistic regression.

library(ergm)

## Simulating a Bernoulli network
Y <- matrix(rbinom(100^2, 1, 0.1), 100, 100)
diag(Y) <- NA

cbind(
logit = glm(as.vector(Y) ~ 1, family = binomial) |> coef(),
ergm = ergm(Y ~ edges) |> coef(),
avg = mean(Y, na.rm = TRUE) |> qlogis()

)
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## logit ergm avg
## (Intercept) -2.218733 -2.218733 -2.218733

When we see this, we say that dyads are independent of each other; this is also called p1
models (Holland and Leinhardt 1981). As a second example, imagine that we are interested
in assessing whether gender homophily (the tendency between individuals of the same gender
to connect) is present in a network. ERG models are the right tool for this task. Moreover,
if we assume that gender homophily is the only mechanism that governs the network, the
problem reduces to a Logistic regression:

𝑃𝒴,𝜃(𝑦𝑖𝑗 = 1) = Logit−1 (𝜃𝑒𝑑𝑔𝑒𝑠 + 𝜃ℎ𝑜𝑚𝑜𝑝ℎ𝑖𝑙𝑦𝟙 (𝑋𝑖 = 𝑋𝑗))

where 𝟙 (⋅) is the indicator function, and 𝑋𝑖 equals one if the 𝑖𝑡ℎ individual is female, and zero
otherwise. To see this, let’s simulate some data. We will use the simulate_formula function
in the ergm package. All we need is a network, a model, and some arbitrary coefficients. We
start with an indicator vector for gender (1: female, male otherwise):

## Simulating data
set.seed(7731)
X <- rbinom(100, 1, 0.5)
head(X)

[1] 0 1 0 0 1 0

Next, we use the functions from the ergm and network packages to simulate a network with
homophily:

## Simulating the network with homophily
library(ergm)

## A network with 100 vertices
Y <- network(100)

## Adding the vertex attribute with the %v% operator
Y %v% "X" <- X

## Simulating the network
Y <- ergm::simulate_formula(

# The model
Y ~ edges + nodematch("X"),
# The coefficients
coef = c(-3, 2)
)
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In this case, the network tends to be sparse (negative edges coefficient) and present ho-
mophilic ties (positive nodematch coefficient). Using the sna package (also from the statnet
suite), we can plot the network:

library(sna)
gplot(Y, vertex.col = c("green", "red")[Y %v% "X" + 1])

Using the ERGM package, we can fit the model using code very similar to the one used to
simulate the network:

fit_homophily <- ergm(Y ~ edges + nodematch("X"))

We will check the results later and compare them against the following: the Logit model.
The following code chunk implements the logistic regression model for this particular model.
This example only proves that ERGMs are a generalization of Logistic regression.

Only to learn!
This example was created only for learning purposes. In practice, you should always
use the ergm package or PNet software to fit ERGMs.

n <- 100
sstats <- summary_formula(Y ~ edges + nodematch("X"))
Y_mat <- as.matrix(Y)
diag(Y_mat) <- NA

## To speedup computations, we pre-compute this value
X_vec <- outer(X, X, "==") |> as.numeric()

## Function to compute the negative loglikelihood
obj <- \(theta) {

# Compute the probability according to the value of Y
p <- ifelse(
Y_mat == 1,

# If Y = 1
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plogis(theta[1] + X_vec * theta[2]),

# If Y = 0
1 - plogis(theta[1] + X_vec * theta[2])

)

# The -loglikelihood
-sum(log(p[!is.na(p)]))

}

And, using the optim function, we can fit the model:

## Fitting the model
fit_homophily_logit <- optim(c(0,0), obj, hessian = TRUE)

Now that we have the values let’s compare them:

## The coefficients
cbind(

theta_ergm = coef(fit_homophily),
theta_logit = fit_homophily_logit$par,
sd_ergm = vcov(fit_homophily) |> diag() |> sqrt(),
sd_logit = sqrt(diag(solve(fit_homophily_logit$hessian)))

)

theta_ergm theta_logit sd_ergm sd_logit
edges -2.973331 -2.973829 0.06659648 0.06661194
nodematch.X 1.926039 1.926380 0.07395580 0.07397025

As you can see, both models yielded the same estimates because they are the same! Before
continuing, let’s review a couple of important results in ERGMs.

7.3 The most important results

If we were able to say what two of the most important results in ERGMs are, I would say the
following: (a) conditioning on the rest of the graph, the probability of a tie distributes Logis-
tic (Bernoulli), and (b) the ratio between two loglikelihoods can be approximated through
simulation.
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7.4 The logistic distribution

Let’s start by stating the result: Conditioning on all graphs that are not 𝑦𝑖𝑗, the probability
of a tie 𝑌𝑖𝑗 is distributed Logistic; formally:

𝑃𝒴,𝜃(𝑌𝑖𝑗 = 1|𝑦−𝑖𝑗) = 1
1 + exp (𝜃t𝛿𝑖𝑗(𝑦))

,

where 𝛿𝑖𝑗(𝑦) ≡ 𝑠+
𝑖𝑗(𝑦) − 𝑠−

𝑖𝑗(𝑦) is the change statistic, and 𝑠+
𝑖𝑗(𝑦) and 𝑠−

𝑖𝑗(𝑦) are the statistics
of the graph with and without the tie 𝑌𝑖𝑗, respectively.

The importance of this result is two-fold: (a) we can use this equation to interpret fitted
models in the context of a single graph (like using odds,) and (b) we can use this equation
to simulate from the model, without touching the normalizing constant.

7.5 The ratio of loglikelihoods

The second significant result is that the ratio of loglikelihoods can be approximated through
simulation. It is based on the following observation by Geyer and Thompson (1992):

𝜅(𝜃)
𝜅(𝜃0) = 𝔼𝒴,𝜃0

((𝜃 − 𝜃0)𝑠(𝑦)t) ,

Using the latter, we can approximate the following loglikelihood ratio:

𝑙(𝜃) − 𝑙(𝜃0) =(𝜃 − 𝜃0)t𝑠(𝑦) − log [ 𝜅(𝜃)
𝜅(𝜃0)]

≈(𝜃 − 𝜃0)t𝑠(𝑦) − log⎡⎢
⎣

𝑀−1 ∑
𝑦(𝑚)

(𝜃 − 𝜃0)t𝑠(𝑦(𝑚))⎤⎥
⎦

Where 𝜃0 is an arbitrary vector of parameters, and 𝑦(𝑚) are sampled from the distribution
𝑃𝒴,𝜃0

. In the words of Geyer and Thompson (1992), “[…] it is possible to approximate 𝜃 by
using simulations from one distribution 𝑃𝒴,𝜃0

no matter which 𝜃0 in the parameter space
is.”
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7.6 Start to finish example

There is no silver bullet to fit ERGMs. However, the following steps are a good starting
point:

1. Inspect the data: Ensure the network you work with is processed correctly. Some
common mistakes include isolates being excluded, vertex attributes not being ade-
quately aligned (mismatch), etc.

2. Start with endogenous effects first: Before jumping into vertex/edge-covariates,
try fitting models that only include structural terms such as edgecount, triangles (or
their equivalent,) stars, reciprocity, etc.

3. After structure is controlled: You can add vertex/edge-covariates. The most com-
mon ones are homophily, nodal-activity, etc.

4. Evaluate your results: Once you have a model you are happy with, the last couple
of steps are (a) assess convergence (which is usually done automagically by the ergm
package,) and (b) assess goodness-of-fit, which in this context means how good was
our model to capture (not-controlled for) properties of the network.

Although we could go ahead and use an existing dataset to play with, instead, we will
simulate a directed graph with the following properties:

• 100 nodes.
• Homophily on Music taste.
• Gender heterophily.
• Reciprocity

The following code chunk illustrates how to do this in R. Notice that, like the previous exam-
ple, we need to create a network with the vertex attributes needed to simulate homophily.

## Simulating the covariates (vertex attribute)
set.seed(1235)

## Simulating the data
Y <- network(100, directed = TRUE)
Y %v% "fav_music" <- sample(c("rock", "jazz", "pop"), 100, replace = TRUE)
Y %v% "female" <- rbinom(100, 1, 0.5)

Now that we have a starting point for the simulation, we can use the simulate_formula
function to get our network:

Y <- ergm::simulate_formula(
Y ~
edges +
nodematch("fav_music") +
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nodematch("female") +
mutual,

coef = c(-4, 1, -1, 2)
)

## And visualize it!
gplot(Y, vertex.col = c("green", "red")[Y %v% "female" + 1])

This figure is precisely why we need ERGMs (and why many Sunbelt talks don’t include a
network visualization!). We know the graph has structure (it’s not random), but visually, it
is hard to see.

7.7 Inspect the data

For the sake of time, we will not take the time to investigate our network properly. How-
ever, you should always do so. Make sure you do descriptive statistics (density, centrality,
modularity, etc.), check missing values, isolates (disconnected nodes), and inspect your data
visually through “notepad” and visualizations before jumping into your ERG model.

7.8 Start with endogenous effects first

The step is to check whether we can fit an ERGM or not. We can do so with the Bernoulli
graph:

model_1 <- ergm(Y ~ edges)
summary(model_1)

Call:
ergm(formula = Y ~ edges)
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Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -3.78885 0.06833 0 -55.45 <1e-04 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 13724 on 9900 degrees of freedom
Residual Deviance: 2102 on 9899 degrees of freedom

AIC: 2104 BIC: 2112 (Smaller is better. MC Std. Err. = 0)

It is rare to see a model in which the edgecount is not significant. The next term we will
add is reciprocity (mutual in the ergm package)

model_2 <- ergm(Y ~ edges + mutual)
summary(model_2)
## Call:
## ergm(formula = Y ~ edges + mutual)
##
## Monte Carlo Maximum Likelihood Results:
##
## Estimate Std. Error MCMC % z value Pr(>|z|)
## edges -3.93277 0.07833 0 -50.205 <1e-04 ***
## mutual 2.15152 0.31514 0 6.827 <1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Null Deviance: 13724 on 9900 degrees of freedom
## Residual Deviance: 2064 on 9898 degrees of freedom
##
## AIC: 2068 BIC: 2083 (Smaller is better. MC Std. Err. = 0.8083)

As expected, reciprocity is significant (we made it like this!.) Notwithstanding, there is a
difference between this model and the previous one. This model was not fitted using MLE.
Instead, since the reciprocity term involves more than one tie, the model cannot be reduced
to a Logistic regression, so it needs to be estimated using one of the other available estimation
methods in the ergm package.

The model starts gaining complexity as we add higher-order terms involving more ties. An
infamous example is the number of triangles. Although highly important for social sciences,
including triangle terms in your ERGMs results in a degenerate model (when the MCMC
chain jumps between empty and fully connected graphs). One exception is if you deal
with small networks. To address this, Tom A. B. Snijders et al. (2006) and Hunter (2007)
introduced various new terms that significantly reduce the risk of degeneracy. Here, we will

55



illustrate the use of the term “geometrically weighted dyadic shared partner” (gwdsp,) which
Prof. David Hunter proposed. The gwdsp term is akin to triadic closure but reduces the
chances of degeneracy.

## Fitting two more models (output message suppressed)
model_3 <- ergm(Y ~ edges + mutual + gwdsp(.5, fixed = TRUE))
## model_4 <- ergm(Y ~ edges + triangles) # bad idea

Right after fitting a model, we want to inspect the results. An excellent tool for this is the
R package texreg (Leifeld 2013):

library(texreg)
screenreg(list(model_1, model_2, model_3))

=============================================================
Model 1 Model 2 Model 3

-------------------------------------------------------------
edges -3.79 *** -3.93 *** -3.84 ***

(0.07) (0.08) (0.21)
mutual 2.15 *** 2.14 ***

(0.32) (0.29)
gwdsp.OTP.fixed.0.5 -0.02

(0.05)
-------------------------------------------------------------
AIC 2104.43 2068.22 2071.94
BIC 2111.63 2082.62 2093.54
Log Likelihood -1051.22 -1032.11 -1032.97
=============================================================
*** p < 0.001; ** p < 0.01; * p < 0.05

So far, model_2 is winning. We will continue with this model.

7.9 Let’s add a little bit of structure

Now that we only have a model featuring endogenous terms, we can add vertex/edge-
covariates. Starting with "fav_music", there are a couple of different ways to use this
node feature:

a. Directly through homophily (assortative mixing): Using the nodematch term, we can
control for the propensity of individuals to connect based on shared music taste.
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b. Homophily (v2): We could activate the option diff = TRUE using the same term. By
doing this, the homophily term is operationalized differently, adding as many terms as
options in the vertex attribute.

c. Mixing: We can use the term nodemix for individuals’ tendency to mix between musical
tastes.

Question
In this context, what would be the different hypotheses behind each decision?

model_4 <- ergm(Y ~ edges + mutual + nodematch("fav_music"))
model_5 <- ergm(Y ~ edges + mutual + nodematch("fav_music", diff = TRUE))
model_6 <- ergm(Y ~ edges + mutual + nodemix("fav_music"))

Now, let’s inspect what we have so far:

screenreg(list(`2` = model_2, `4` = model_4, `5` = model_5, `6` = model_6))

================================================================================
2 4 5 6

--------------------------------------------------------------------------------
edges -3.93 *** -4.29 *** -4.29 *** -3.56 ***

(0.08) (0.11) (0.11) (0.24)
mutual 2.15 *** 1.99 *** 2.00 *** 2.02 ***

(0.32) (0.30) (0.30) (0.30)
nodematch.fav_music 0.85 ***

(0.14)
nodematch.fav_music.jazz 0.74 **

(0.25)
nodematch.fav_music.pop 0.82 ***

(0.18)
nodematch.fav_music.rock 0.87 ***

(0.17)
mix.fav_music.pop.jazz -0.54

(0.34)
mix.fav_music.rock.jazz -0.75 *

(0.38)
mix.fav_music.jazz.pop -0.60

(0.35)
mix.fav_music.pop.pop 0.10

(0.27)
mix.fav_music.rock.pop -0.50
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(0.31)
mix.fav_music.jazz.rock -1.40 **

(0.44)
mix.fav_music.pop.rock -0.86 *

(0.33)
mix.fav_music.rock.rock 0.15

(0.27)
--------------------------------------------------------------------------------
AIC 2068.22 2030.85 2033.57 2036.37
BIC 2082.62 2052.45 2069.57 2108.38
Log Likelihood -1032.11 -1012.42 -1011.79 -1008.19
================================================================================
*** p < 0.001; ** p < 0.01; * p < 0.05

Although model 5 has a higher loglikelihood, using AIC or BIC suggests model 4 is a better
candidate. For the sake of time, we will jump ahead and add nodematch("female") as the
last term of our model. The next step is to assess (a) convergence and (b) goodness-of-fit.

model_final <- ergm(Y ~ edges + mutual + nodematch("fav_music") + nodematch("female"))

## Printing the pretty table
screenreg(list(`2` = model_2, `4` = model_4, `Final` = model_final))

============================================================
2 4 Final

------------------------------------------------------------
edges -3.93 *** -4.29 *** -3.95 ***

(0.08) (0.11) (0.12)
mutual 2.15 *** 1.99 *** 1.86 ***

(0.32) (0.30) (0.33)
nodematch.fav_music 0.85 *** 0.81 ***

(0.14) (0.14)
nodematch.female -0.74 ***

(0.15)
------------------------------------------------------------
AIC 2068.22 2030.85 2002.18
BIC 2082.62 2052.45 2030.98
Log Likelihood -1032.11 -1012.42 -997.09
============================================================
*** p < 0.001; ** p < 0.01; * p < 0.05
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7.10 More about ERGMs

We have shown here just a glimpse of what ERG models are. A large, active, collaborative
community of social network scientists is working on new extensions and advances. If you
want to learn more about ERGMs, I recommend the following resources:

• The Statnet website (link).

• The book “Exponential Random Graph Models for Social Networks: Theory, Methods,
and Applications” by Lusher, Koskinen, and Robins (2013).

• Melnet’s PNEt website (link).
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8 Convergence on ERGMs

Let’s continue what we left off in the previous session: Evaluating our ERGMs. Like
most models, ERGMs are a mix between art and science. Here is again a list of
steps/considerations to have when fitting ERGMs:

1. Inspect the data.

2. Start with endogenous effects first.

3. After structure is controlled.

4. Evaluate your results: Once you have a model you are happy with, the last couple
of steps are (a) assess convergence (which is usually done automagically by the ergm
package,) and (b) assess goodness-of-fit, which in this context means how good was
our model to capture (not-controlled for) properties of the network.

We are in the last step. Let’s recall what was our final model with the simulated data (code
folded intentionally):

## Loading the packages
library(ergm)
library(sna)

## Simulating the covariates (vertex attribute)
set.seed(1235)

## Simulating the data
Y <- network(100, directed = TRUE)
Y %v% "fav_music" <- sample(c("rock", "jazz", "pop"), 100, replace = TRUE)
Y %v% "female" <- rbinom(100, 1, 0.5)

## Simulating the ERGM
Y <- ergm::simulate_formula(

Y ~
edges +
nodematch("fav_music") +
nodematch("female") +
mutual,

coef = c(-4, 1, -1, 2)
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)

gplot(Y, vertex.col = c("green", "red")[Y %v% "female" + 1])

model_final <- ergm(Y ~ edges + mutual + nodematch("fav_music") + nodematch("female"))

summary(model_final)

Call:
ergm(formula = Y ~ edges + mutual + nodematch("fav_music") +

nodematch("female"))

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -3.9573 0.1112 0 -35.588 <1e-04 ***
mutual 1.8950 0.2853 0 6.643 <1e-04 ***
nodematch.fav_music 0.8295 0.1291 0 6.426 <1e-04 ***
nodematch.female -0.7436 0.1379 0 -5.394 <1e-04 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 13724 on 9900 degrees of freedom
Residual Deviance: 1994 on 9896 degrees of freedom

AIC: 2002 BIC: 2031 (Smaller is better. MC Std. Err. = 0.8189)

8.1 Convergence

As our model was fitted using MCMC, we must ensure the chains converged. We can use
the mcmc.diagnostics function from the ergm package to check model convergence. This
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function looks at the last set of simulations of the MCMC model and generates various
diagnostics for the user.

Under the hood, the fitting algorithm generates a stream of networks based on those pa-
rameters for each new proposed set of model parameters. The last stream of networks is
thus simulated using the final state of the model. The mcmc.diagnostics function takes
that stream of networks and plots the sequence of the sufficient statistics included in the
model. A converged model should show a stationary statistics sequence, moving around a
fixed value without (a) becoming stuck at any point and (b) chaining the tendency. This
model shows both:

mcmc.diagnostics(model_final, which = c("plots"))
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Note: MCMC diagnostics shown here are from the last round of
simulation, prior to computation of final parameter estimates.
Because the final estimates are refinements of those used for this
simulation run, these diagnostics may understate model performance.
To directly assess the performance of the final model on in-model
statistics, please use the GOF command: gof(ergmFitObject,
GOF=~model).
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Now that we know our model was good enough to represent the observed statistics (sample
them, actually,) let’s see how good it is at capturing other features of the network that were
not included in the model.

8.2 Goodness-of-fit

This would be the last step in the sequence of steps to fit an ERGM. As we mentioned before,
the idea of Goodness-of-fit [GOF] in ERG models is to see how well our model captures other
properties of the graph that were not included in the model. By default, the gof function
from the ergm package computes GOF for:

a. The model statistics.

b. The outdegree distribution.

c. The indegree distribution.

d. The distribution of edge-wise shared partners.

e. The distribution of the geodesic distances (shortest path).

The process of evaluating GOF is relatively straightforward. Using samples from the pos-
terior distribution, we check whether the observed statistics from above are covered (fall
within the CI) of our model. If they do, we say that the model has a good fit. Otherwise, if
we observe significant anomalies, we return to the bench and try to improve our model.

As with all simulated data, our gof() call shows that our selected model was an excellent
choice for the observed graph:

gof_final <- gof(model_final)
print(gof_final)
##
## Goodness-of-fit for in-degree
##
## obs min mean max MC p-value
## idegree0 11 3 10.93 20 1.00
## idegree1 22 16 24.80 34 0.58
## idegree2 23 17 26.54 36 0.52
## idegree3 30 9 19.41 31 0.02
## idegree4 10 4 10.94 20 0.94
## idegree5 3 1 4.97 11 0.46
## idegree6 1 0 1.68 5 0.96
## idegree7 0 0 0.58 3 1.00
## idegree8 0 0 0.14 1 1.00
## idegree10 0 0 0.01 1 1.00
##
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## Goodness-of-fit for out-degree
##
## obs min mean max MC p-value
## odegree0 10 3 10.71 18 1.00
## odegree1 30 13 24.67 35 0.28
## odegree2 23 18 27.50 40 0.38
## odegree3 17 12 19.01 28 0.74
## odegree4 10 3 10.72 18 1.00
## odegree5 8 1 4.84 10 0.12
## odegree6 2 0 1.79 6 1.00
## odegree7 0 0 0.57 3 1.00
## odegree8 0 0 0.15 2 1.00
## odegree9 0 0 0.03 1 1.00
## odegree10 0 0 0.01 1 1.00
##
## Goodness-of-fit for edgewise shared partner
##
## obs min mean max MC p-value
## esp.OTP0 212 178 209.21 241 0.78
## esp.OTP1 7 3 10.47 22 0.44
## esp.OTP2 0 0 0.40 3 1.00
##
## Goodness-of-fit for minimum geodesic distance
##
## obs min mean max MC p-value
## 1 219 190 220.08 255 0.94
## 2 449 326 459.25 619 0.98
## 3 790 499 842.85 1183 0.90
## 4 1151 708 1252.11 1960 0.80
## 5 1245 775 1396.75 2266 0.66
## 6 1043 656 1181.38 1680 0.44
## 7 745 499 802.34 1211 0.72
## 8 434 194 466.85 791 0.86
## 9 198 57 244.78 569 0.72
## 10 80 11 121.93 408 0.76
## 11 10 1 60.50 285 0.42
## 12 1 0 30.83 251 0.46
## 13 0 0 15.96 186 0.74
## 14 0 0 8.42 133 1.00
## 15 0 0 5.02 96 1.00
## 16 0 0 3.03 65 1.00
## 17 0 0 1.83 60 1.00
## 18 0 0 1.05 47 1.00
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## 19 0 0 0.54 23 1.00
## 20 0 0 0.18 7 1.00
## 21 0 0 0.07 3 1.00
## 22 0 0 0.01 1 1.00
## Inf 3535 776 2784.24 4680 0.38
##
## Goodness-of-fit for model statistics
##
## obs min mean max MC p-value
## edges 219 190 220.08 255 0.94
## mutual 16 9 16.36 25 1.00
## nodematch.fav_music 123 97 123.55 152 1.00
## nodematch.female 72 49 71.53 90 0.90

It is easier to see the results using the plot function:

## Plotting the result (5 figures)
op <- par(mfrow = c(3,2))
plot(gof_final)
par(op)
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9 Odd balls

Many times the existing methods are not enough to answer the questions we have. Most of
the time, non-parametric statistics are the answer. In this section, we will discuss some of
the cases where we had to use non-parametric statistics.

9.1 Non-parametric statistics

Non-parametric statistics are statistical methods in which parametric assumptions such as
probability function or model parameters are not made. In other words, non-parametric
statistics are distribution-free methods. With many non-parametric methods, simulation-
based methods are the most commonly used. The following papers show a couple of examples
using non-parametric methods applied to network inference problems.

9.2 Case 1: Social mimicry

In Bell et al. (2019), we investigated the prevalence of social mimicry in families while
eating. Social mimicry is a widely studied phenomenon. And while some statistical methods
try to measure it, we approach the problem differently. Instead of assuming mimicry and
measuring it right away, we started by asking if there was mimicry in the first place.

The study featured an experiment that consisted of the following:

a. Families were invited to a lab and were asked to eat a meal together.

b. Using accelerometers, we time-stamped the action of taking a bite.

c. Data was then cleaned and processed to obtain the time stamps of each bite (verified
using video recordings of the event).

The null hypothesis was then: “The sequence of bites for Person 𝑖 and 𝑗 are independent
(i.e., no mimicry).” To test this hypothesis, we used a permutation test. The test consisted
of the following:

1. For each pair of persons 𝑖 and 𝑗, we calculated the average time gap between their
bites.
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2. We then generated a null distribution by shuffling the time blocks of each person, i.e.,
for each dyad:

a. For each individual, we computed the sequence of time gaps between bites (time
between bites each person took).

b. Using that sequence, we then simulated a new sequence of bites for each individual,
fixing the individual level time gap distribution.

c. Once shuffled, we then computed the average time gap per dyad.

3. Finally, we used the generated null distribution to assess the prevalence of social
mimicry. The next figure shows the results for one dyad:

Figure 9.1: Null distribution of average time gap between person 𝑖 and person 𝑗 – reproduced
from Bell et al. (2019)

9.3 Case 2: Imaginary motifs

In Tanaka and Vega Yon (2024), we study the prevalence of perception-based network motifs.
While the ERGM framework would be a natural choice, as a first approach, we used non-
parametric tests for hypothesis testing. The rest of this section is a reproduction of the
methods section of the paper:

69



The process can be described as follows:

Pr (𝑝𝑖𝑗 = 1∣ 𝑡𝑖𝑗 = 1) = {
| ∑⊕(𝑘) 𝑡𝑛𝑚|−1 ∑⊕(𝑘) 𝑝𝑛𝑚𝑡𝑛𝑚 if 𝑘 ∈ {𝑖, 𝑗}
| ∑⊕(𝑘)∁ 𝑡𝑛𝑚|−1 ∑⊕(𝑘)∁ 𝑝𝑛𝑚𝑡𝑛𝑚 otherwise, (9.1)

Pr (𝑝𝑖𝑗 = 0∣ 𝑡𝑖𝑗 = 0) = {
| ∑⊕(𝑘)(1 − 𝑡𝑛𝑚)|−1 ∑⊕(𝑘)(1 − 𝑝𝑛𝑚𝑡𝑛𝑚) if 𝑘 ∈ {𝑖, 𝑗}
| ∑⊕(𝑘)∁(1 − 𝑡𝑛𝑚)|−1 ∑⊕(𝑘)∁(1 − 𝑝𝑛𝑚𝑡𝑛𝑚) otherwise, (9.2)

where, ⊕(𝑘) ≡ {(𝑚, 𝑛) ∶ (𝑚 = 𝑘) ⊕ (𝑛 = 𝑘)} is the set of ties involving 𝑘, and ⊕(𝑘)∁ is its
complement.

Each sampled perceived graph was P𝑏
𝑙–b-th sampled graph for each individual l. We then

counted the dyadic imaginary network motifs, 𝜏𝑏
𝑙 ≡ 𝑠 (T, P𝑏); the same was done to the

observed graphs, ̂𝜏𝑙 ≡ 𝑠 (T, P). Finally, we calculated a p-value using the equal-tail non-
parametric test drawing 𝐵 = 2, 000 samples recommend 1,000 minimum) from the null
distribution, comparing the observed imaginary motif counts, ̂𝜏𝑙, and what we would expect
to see by chance, {𝜏𝑏

𝑙 }𝐵
𝑏=1:

̂𝑝( ̂𝜏𝑙) = 2 × min[ 1
𝐵 ∑

𝑏
𝐼(𝜏𝑏

𝑙 ≤ ̂𝜏𝑙),
1
𝐵 ∑

𝑏
𝐼(𝜏𝑏

𝑙 > ̂𝜏𝑙)] (9.3)
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10 Lab II

The ergm package comes with a handful of vignettes (extended R examples) that you can
use to learn more about the package. The vignette with the same name as the package
shows an example fitting a model to the network faux.mesa.high. Address the following
questions:

a. What type of ERG model is this?

b. Looking at the plot in the vignette, what other term(s) could you consider worth
adding to the model? Why?

c. The vignette did not include a goodness-of-fit analysis. Can you add one? What do
you find?

d. Challenge: without using ergm to fit the model, estimate the following 𝑝1 model: ~
edges + nodefactor("Race"). Compare your results with what you get using ergm.
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11 Advanced ERGMs: Constraints

11.1 Introduction

For this section, we will dive in into ERGM constranints. Using constraints, you will be able
to modify the sampling space of the model to things such as:

• Pool (multilevel) models.
• Accounting for data generating process.
• Make your model behave (with caution.)
• Even fit Discrete-Exponential Family Models (DEFM.)

We will start with formally understanding what constraining the space means and then
continue with some examples.

11.2 Constraining ERGMs

Exponential Random Graph Models [ERGMs] can represent a variety of network classes.
We often look at “regular” social networks like school students, colleagues in the workplace,
or families. Nonetheless, some social networks we study have features that restrict how
connections can occur. Typical examples are bi-partite graphs and multilevel networks.
There are two classes of vertices in bi-partite networks, and ties can only occur between
classes. On the other hand, multilevel networks may feature multiple classes with inter-class
ties that are somewhat restricted. Structural constraints exist in both cases, meaning some
configurations may not be plausible.

Mathematically, what we are trying to do is, instead of assuming that all network configu-
rations are possible:

{𝑦 ∈ 𝒴 ∶ 𝑦𝑖𝑗 = 0, ∀𝑖 = 𝑗}

we want to go a bit further avoiding loops, namely:

{𝑦 ∈ 𝒴 ∶ 𝑦𝑖𝑗 = 0, ∀𝑖 = 𝑗; y ∈ 𝐶} ,
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where 𝐶 is a constraint, for example, only networks with no triangles. The ergm R package
has built-in capabilities to deal with some of these cases. Nonetheless, we can specify models
with arbitrary structural constraints built into the model. The key is in using offset terms.

11.3 Example 1: Pool (block-diagonal/multilevel) ERGM

Nowadays, multi-network studies featuring a large sample of networks are easy to see. When
we deal with multiple networks, there are usually two approaches to analyzing them: (a)
estimate separate ERGMs and do a meta-analysis like in [ANN CITATION], or (b) fit a
pooled ERGM. Here, we will follow the latter.

Pooled ERGMs resemble typical statistical methods. Assuming that the networks are inde-
pendent, we can estimate a model like the following:

𝑃𝒴,𝜃(𝑌 1 = 𝑦1, 𝑌 2 = 𝑦2, … , 𝑌 1 = 𝑦𝐿) =
𝐿

∏
𝑙
exp (𝜃t𝑠(𝑦𝑙)) 𝜅𝑙(𝜃)−1

In this case, we assume that all networks have the same data-generating process, meaning
they all come from the same 𝒴. If that’s not the case and, like in any regression analysis, we
could write a hierarchical model where model parameters come from the same distribution
or fit a random effects ERGM as described in Slaughter and Koehly (2016).

We have a handful of different ways of fitting pooled ERGMs. If you are dealing with small
networks (about six nodes if directed and eight if undirected,) you can use the ergmito
R package (G. G. Vega Yon, Slaughter, and Haye 2021; G. Vega Yon 2020). The ergm
package can still assist you with simple models if you have larger networks. But if you want
to leverage the power of having multiple networks, the recently published ergm.multi R
package should be your choice (Krivitsky, Coletti, and Hens 2023a; Krivitsky 2023). Since
we are learning to use constraints, we will use the ergm package. Let’s start with an example
from the ergmito R package:

library(sna)
library(ergm)
library(ergmito)

## Loading five artificial networks (5 networks)
data(fivenets)

## Taking a look at the first two
fivenets[1:2]
## [[1]]
## Network attributes:
## vertices = 4
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## directed = TRUE
## hyper = FALSE
## loops = FALSE
## multiple = FALSE
## bipartite = FALSE
## total edges= 2
## missing edges= 0
## non-missing edges= 2
##
## Vertex attribute names:
## female name
##
## No edge attributes
##
## [[2]]
## Network attributes:
## vertices = 4
## directed = TRUE
## hyper = FALSE
## loops = FALSE
## multiple = FALSE
## bipartite = FALSE
## total edges= 7
## missing edges= 0
## non-missing edges= 7
##
## Vertex attribute names:
## female name
##
## No edge attributes

We can also visualize these five networks:

## Quickly visualizing fine networks
op <- par(mfrow = c(2, 3), mar = c(1,1,1,1)/2)
res <- lapply(fivenets, \(x) {gplot(x); box()})
par(op)
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These five networks were generated using an edges+gender homophily model. Since all the
graphs in the list are small (five vertices each,) we can fit a pooled ERGM using the ergmito
function from the package of the same name:

summary(ergmito(fivenets ~ edges + nodematch("female")))

ERGMito estimates (MLE)
This model includes 5 networks.

formula:
fivenets ~ edges + nodematch("female")

Estimate Std. Error z value Pr(>|z|)
edges -1.70475 0.54356 -3.1363 0.001711 **
nodematch.female 1.58697 0.64305 2.4679 0.013592 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC: 73.34109 BIC: 77.52978 (Smaller is better.)

Who cares about small networks?
You may be wondering why someone would care about small networks. Well, the truth
is that small networks are the fabric of societies (think about family nucleous,) and
are more complicated than you think. A directed graph with five vertices has about
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1,000,000 possible configurations.

HPC in small networks
The key of ERGMitos is that, with a small enough support size, we can skip us-
ing MCMC and simulation-based approximations and directly calculate likelihoods for
pooled models. This is extremely powerful as it opens the door to diverse statistical
methods.

The question is: How can we use constraints to fit the same model using the ergm package?
We have to follow these steps:

1. We must combine all the networks into a single network object.

2. Specify the constraint via the constraint argument in the ergm function. In this case,
use the blockdiag constraint (check out the manual ?ergm.constraints to learn
more about what’s available with the tool).

3. Fit the model!

The ergmito package has a convenient function that will take any list of network objects
(or matrices) and turn it into a single network. The passed networks don’t need to have the
same size. After combining the networks, the function creates a new vertex attribute that
holds the id of the original group.

## Combining the networks
bd <- blockdiagonalize(fivenets)
bd

Network attributes:
vertices = 20
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 20
missing edges= 0
non-missing edges= 20

Vertex attribute names:
block female name_original vertex.names

No edge attributes
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Just out of curiosity, what would we get if we fitted a regular ERGM to this data? Here is
the answer:

ergm(bd ~ edges + nodematch("female"))

Call:
ergm(formula = bd ~ edges + nodematch("female"))

Maximum Likelihood Coefficients:
edges nodematch.female

-3.882 1.542

*i.e.*, biased estimates. Although the homophily term is very similar to the original estimate,
the edges parameter is twice the size. The estimate is inflated because the support of this
model includes networks where there are ties between the groups, yet these networks cannot
be connected one another.

To solve this issue, as we said, we use the constraints:

ergm(bd ~ edges + nodematch("female"), constraints = ~ blockdiag("block"))

Call:
ergm(formula = bd ~ edges + nodematch("female"), constraints = ~blockdiag("block"))

Maximum Likelihood Coefficients:
edges nodematch.female

-1.705 1.587

Success! This model is now correctly specified. Although it seems like we have a single
network, by imposing the blockdiagonal constraint, we are fitting a pooled model. The ergm
package comes with more alternatives to restricting the sample space of your model, but
there may be a case where you need more. For those cases, the offset comes in handy.

11.4 Example 2: Interlocking egos and disconnected alters1

Imagine that we have two sets of vertices. The first, group E, are egos in an egocentric
study. The second group, called A, is composed of people mentioned by egos in E but were
not surveyed. Assume that individuals in A can only connect to individuals in E; moreover,

1Thanks to Laura Koehly, who devised this complicated model.
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individuals in E have no restrictions on connecting. In other words, only two types of ties exist:
E-E and A-E. The question is now, how can we enforce such a constraint in an ERGM?

Using offsets, and in particular, setting coefficients to -Inf provides an easy way to restrict
the support set of ERGMs. For example, if we wanted to constrain the support to include
networks with no triangles, we would add the term offset(triangle) and use the option
offset.coef = -Inf to indicate that realizations including triangles are not possible. Using
R:

ergm(net ~ edges + offset(triangle), offset.coef = -Inf)

In this model, a Bernoulli graph, we reduce the sample space to networks with no triangles.
In our example, such a statistic should only take non-zero values whenever ties within the A
class happen. We can use the nodematch() term to do that. Formally

NodeMatch(𝑥) = ∑
𝑖,𝑗

𝑦𝑖𝑗1(𝑥𝑖 = 𝑥𝑗)

This statistic will sum over all ties in which source (𝑖) and target (𝑗)’s 𝑋 attribute is equal.
One way to make this happen is by creating an auxiliary variable that equals, e.g., 0 for all
vertices in A, and a unique value different from zero otherwise. For example, if we had 2
As and three Es, the data would look like {0, 0, 1, 2, 3}. The following code block creates an
empty graph with 50 nodes, 10 of which are in group E (ego).

library(ergm, quietly = TRUE)
library(sna, quietly = TRUE)

n <- 50
n_egos <- 10
net <- as.network(matrix(0, ncol = n, nrow = n), directed = TRUE)

## Let's assing the groups
net %v% "is.ego" <- c(rep(TRUE, n_egos), rep(FALSE, n - n_egos))
net %v% "is.ego"

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[49] FALSE FALSE

gplot(net, vertex.col = net %v% "is.ego")
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To create the auxiliary variable, we will use the following function:

## Function that creates an aux variable for the ergm model
make_aux_var <- function(my_net, is_ego_dummy) {

n_vertex <- length(my_net %v% is_ego_dummy)
n_ego_ <- sum(my_net %v% is_ego_dummy)

# Creating an auxiliary variable to identify the non-informant non-informant ties
my_net %v% "aux_var" <- ifelse(
!my_net %v% is_ego_dummy, 0, 1:(n_vertex - n_ego_)
)

my_net
}

Calling the function in our data results in the following:

net <- make_aux_var(net, "is.ego")

## Taking a look over the first 15 rows of data
cbind(

Is_Ego = net %v% "is.ego",
Aux = net %v% "aux_var"

) |> head(n = 15)

Is_Ego Aux
[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 1 4
[5,] 1 5
[6,] 1 6
[7,] 1 7
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[8,] 1 8
[9,] 1 9

[10,] 1 10
[11,] 0 0
[12,] 0 0
[13,] 0 0
[14,] 0 0
[15,] 0 0

We can now use this data to simulate a network in which ties between A-class vertices are
not possible:

set.seed(2828)
net_sim <- simulate(net ~ edges + nodematch("aux_var"), coef = c(-3.0, -Inf))
gplot(net_sim, vertex.col = net_sim %v% "is.ego")

As you can see, this network has only ties of the type E-E and A-E. We can double-check by
(i) looking at the counts and (ii) visualizing each induced-subgraph separately:

summary(net_sim ~ edges + nodematch("aux_var"))

edges nodematch.aux_var
49 0

net_of_alters <- get.inducedSubgraph(
net_sim, which((net_sim %v% "aux_var") == 0)
)

net_of_egos <- get.inducedSubgraph(
net_sim, which((net_sim %v% "aux_var") != 0)
)

## Counts
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summary(net_of_alters ~ edges + nodematch("aux_var"))

edges nodematch.aux_var
0 0

summary(net_of_egos ~ edges + nodematch("aux_var"))

edges nodematch.aux_var
1 0

## Figures
op <- par(mfcol = c(1, 2))
gplot(net_of_alters, vertex.col = net_of_alters %v% "is.ego", main = "A")
gplot(net_of_egos, vertex.col = net_of_egos %v% "is.ego", main = "E")

A E

par(op)

Now, to fit an ERGM with this constraint, we simply need to make use of the offset terms.
Here is an example:

ans <- ergm(
net_sim ~ edges + offset(nodematch("aux_var")), # The model (notice the offset)
offset.coef = -Inf # The offset coefficient
)

## Starting maximum pseudolikelihood estimation (MPLE):
## Obtaining the responsible dyads.
## Evaluating the predictor and response matrix.
## Maximizing the pseudolikelihood.
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## Finished MPLE.
## Evaluating log-likelihood at the estimate.
summary(ans)
## Call:
## ergm(formula = net_sim ~ edges + offset(nodematch("aux_var")),
## offset.coef = -Inf)
##
## Maximum Likelihood Results:
##
## Estimate Std. Error MCMC % z value Pr(>|z|)
## edges -2.843 0.147 0 -19.34 <1e-04 ***
## offset(nodematch.aux_var) -Inf 0.000 0 -Inf <1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Null Deviance: 1233.8 on 890 degrees of freedom
## Residual Deviance: 379.4 on 888 degrees of freedom
##
## AIC: 381.4 BIC: 386.2 (Smaller is better. MC Std. Err. = 0)
##
## The following terms are fixed by offset and are not estimated:
## offset(nodematch.aux_var)

This ERGM model–which by the way only featured dyadic-independent terms, and thus
can be reduced to a logistic regression–restricts the support by excluding all networks in
which ties within the class A exists. To finalize, let’s look at a few simulations based on this
model:

set.seed(1323)
op <- par(mfcol = c(2,2), mar = rep(1, 4))
for (i in 1:4) {

gplot(simulate(ans), vertex.col = net %v% "is.ego", vertex.cex = 2)
box()

}
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par(op)

All networks with no ties between A nodes.

11.5 Example 3: Bi-partite networks

In the case of bipartite networks (sometimes called affiliation networks,) we can use ergm’s
terms for bipartite graphs to corroborate what we discussed here. For example, the two-star
term. Let’s start simulating a bipartite network using the edges and two-star parameters.
Since the k-star term is usually complex to fit (tends to generate degenerate models,) we
will take advantage of the Log() transformation function in the ergm package to smooth the
term.2

The bipartite network that we will be simulating will have 100 actors and 50 entities. Actors,
which we will map to the first level of the ergm terms, this is, b1star b1nodematch, etc. will
send ties to the entities, the second level of the bipartite ERGM. To create a bipartite
network, we will create an empty matrix of size nactors x nentitites; thus, actors are
represented by rows and entities by columns.

2After writing this example, it became apparent the use of the Log() transformation function may not
be ideal. Since many terms used in ERGMs can be zero, e.g., triangles, the term Log(~ ostar(2)) is
undefined when ostar(2) = 0. In practice, the ERGM package sets a lower limit for the log of 0, so,
instead of having Log(0) ~ -Inf, they set it to be a really large negative number. This causes all sorts
of issues to the estimates; in our example, an overestimation of the population parameter and a positive
log-likelihood. Therefore, I wouldn’t recommend using this transformation too often.
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## Parameters for the simulation
nactors <- 100
nentities <- floor(nactors/2)
n <- nactors + nentities

## Creating an empty bipartite network (baseline)
net_b <- network(

matrix(0, nrow = nactors, ncol = nentities), bipartite = TRUE
)

## Simulating the bipartite ERGM,
net_b <- simulate(net_b ~ edges + Log(~b1star(2)), coef = c(-3, 1.5), seed = 55)

Let’s see what we got here:

summary(net_b ~ edges + Log(~b1star(2)))

edges Log~b1star2
245.000000 5.746203

netplot::nplot(net_b, vertex.col = (1:n <= nactors) + 1)

Notice that the first nactors vertices in the network are the actors, and the remaining
are the entities. Now, although the ergm package features bipartite network terms, we can
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still fit a bipartite ERGM without explicitly declaring the graph as such. In such case, the
b1star(2) term of a bipartite network is equivalent to an ostar(2) in a directed graph.
Likewise, b2star(2) in a bipartite graph matches the istar(2) term in a directed graph.
This information will be relevant when fitting the ERGM. Let’s transform the bipartite
network into a directed graph. The following code block does so:

## Identifying the edges
net_not_b <- which(as.matrix(net_b) != 0, arr.ind = TRUE)

## We need to offset the endpoint of the ties by nactors
## so that the ids go from 1 through (nactors + nentitites)
net_not_b[,2] <- net_not_b[,2] + nactors

## The resulting graph is a directed network
net_not_b <- network(net_not_b, directed = TRUE)

Now we are almost done. As before, we need to use node-level covariates to put the con-
straints in our model. For this ERGM to reflect an ERGM on a bipartite network, we need
two constraints:

1. Only ties from actors to entities are allowed, and
2. entities can only receive ties.

The corresponding offset terms for this model are: nodematch("is.actor") ~ -Inf, and
nodeocov("isnot.actor") ~ -Inf. Mathematically:

NodeMatch(x = ”is.actor”) = ∑
𝑖<𝑗

𝑦𝑖𝑗𝟙 (𝑥𝑖 = 𝑥𝑗)

NodeOCov(x = ”isnot.actor”) = ∑
𝑖

𝑥𝑖 × ∑
𝑗<𝑖

𝑦𝑖𝑗

In other words, we are setting that ties between nodes of the same class are forbidden, and
outgoing ties are forbidden for entities. Let’s create the vertex attributes needed to use the
aforementioned terms:

net_not_b %v% "is.actor" <- as.integer(1:n <= nactors)
net_not_b %v% "isnot.actor" <- as.integer(1:n > nactors)

Finally, to make sure we have done all well, let’s look how both networks–bipartite and
unimodal–look side by side:

## First, let's get the layout
fig <- netplot::nplot(net_b, vertex.col = (1:n <= nactors) + 1)
gridExtra::grid.arrange(

85



fig,
netplot::nplot(
net_not_b, vertex.col = (1:n <= nactors) + 1,
layout = fig$.layout
),

ncol = 2, nrow = 1
)

## Looking at the counts
summary(net_b ~ edges + b1star(2) + b2star(2))

edges b1star2 b2star2
245 313 645

summary(net_not_b ~ edges + ostar(2) + istar(2))

edges ostar2 istar2
245 313 645

With the two networks matching, we can now fit the ERGMs with and without offset terms
and compare the results between the two models:

## ERGM with a bipartite graph
res_b <- ergm(

# Main formula
net_b ~ edges + Log(~b1star(2)),

# Control parameters
control = control.ergm(seed = 1)
)
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## ERGM with a digraph with constraints
res_not_b <- ergm(

# Main formula
net_not_b ~ edges + Log(~ostar(2)) +

# Offset terms
offset(nodematch("is.actor")) + offset(nodeocov("isnot.actor")),
offset.coef = c(-Inf, -Inf),

# Control parameters
control = control.ergm(seed = 1)
)

Here are the estimates (using the texreg R package for a prettier output):

texreg::screenreg(list(Bipartite = res_b, Directed = res_not_b))

======================================================================
Bipartite Directed

----------------------------------------------------------------------
edges -3.14 *** -3.11 ***

(0.15) (0.14)
Log~b1star2 21.89

(17.13)
Log~ostar2 19.66

(16.75)
offset(nodematch.is.actor) -Inf

offset(nodeocov.isnot.actor) -Inf

----------------------------------------------------------------------
AIC 1958.00 -2134192392498170112.00
BIC 1971.03 -2134192392498170112.00
Log Likelihood -977.00 1067096196249085056.00
======================================================================
*** p < 0.001; ** p < 0.01; * p < 0.05

As expected, both models yield the “same” estimate. The minor differences observed between
the models are how the ergm package performs the sampling. In particular, in the bipartite
case, ergm has special routines for making the sampling more efficient, having a higher
acceptance rate than that of the model in which the bipartite graph was not explicitly
declared. We can tell this by inspecting rejection rates:
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data.frame(
Bipartite = coda::rejectionRate(res_b$sample[[1]]) * 100,
Directed = coda::rejectionRate(res_not_b$sample[[1]][, -c(3,4)]) * 100

) |> knitr::kable(digits = 2, caption = "Rejection rate (percent)")

Table 11.1: Rejection rate (percent)

Bipartite Directed
edges 2.48 3.67
Log~b1star2 1.24 2.04

The ERGM fitted with the offset terms has a much higher rejection rate than that of the
ERGM fitted with the bipartite ERGM.

Finally, the fact that we can fit ERGMs using offset does not mean that we need to use
it ALL the time. Unless there is a very good reason to go around ergm’s capabilities, I
wouldn’t recommend fitting bipartite ERGMs as we just did, as the authors of the package
have included (MANY) features to make our job easier.
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12 New topics in network modeling

12.1 Overview

• With more data and computing resources, the things that we can ask and do with
networks are becoming increasingly (even more) exciting and complex.

• In this section, I will introduce some of the latest advancements and forthcoming
topics in network modeling.

12.2 Part I: New models and extensions

12.3 Mutli-ERGMs

• In Krivitsky, Coletti, and Hens (2023a), the authors present a start-to-finish pooled
ERGM example featuring heterogeneous data sources.

• They increase power and allow exploring heterogeneous effects across types/classes of
networks.
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12.4 Statistical power of SOAM

• SOAM Stadtfeld et al. (2020) proposes ways to perform power analysis for Siena
models. At the center of their six-step approach is simulation.
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12.5 Bayesian ALAAM

Ever wondered how to model influence exclusively?

• The Auto-Logistic Actor Attribute Model [ALAAM] is a model that allows us to do
just that.

• Koskinen and Daraganova (2022) extends the ALAAM model to a Bayesian framework.

• It provides greater flexibility to accommodate more complicated models and add ex-
tensions such as hierarchical models.

12.6 Relational Event Models

• REMs are great for modeling sequences of ties (instead of panel or cross-sectional.)

• Butts et al. (2023) provides a general overview of Relational Event Models [REMs,]
new methods, and future steps.

91



Figure 12.1: Figure 1 reproduced from A. D. Stivala et al. (2020)

Figure 12.2: Figure 3 reproduced from Brandenberger (2020)
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12.7 Big ERGMs

• ERGMs In A. Stivala, Robins, and Lomi (2020), a new method is proposed to estimate
large ERGMs (featuring millions of nodes).

12.8 Exponential Random Network Models

• Wang, Fellows, and Handcock recently published a re-introduction of the ERNM frame-
work (Wang, Fellows, and Handcock 2023).

• ERNMs generalize ERGMs to incorporate behavior and are the cross-sectional causing
of SIENA models.

ERGM ∶𝑃𝒴,𝜃(𝑌 = 𝑦|𝑋 = 𝑥)
ERNM ∶𝑃𝒴,𝜃(𝑌 = 𝑦, 𝑋 = 𝑥)

12.9 Part II: Shameless self-promotion

12.10 ERGMitos: Small ERGMs

• ERGMitos1 (G. G. Vega Yon, Slaughter, and Haye 2021) leverage small network sizes
to use exact statistics.

12.11 Discrete Exponential-family Models

• ERGMs are a particular case of Random Markov fields.

• We can use the ERGM framework for modeling vectors of binary outcomes, e.g., the
consumption of {𝑡𝑜𝑏𝑎𝑐𝑐𝑜, 𝑀𝐽, 𝑎𝑙𝑐𝑜ℎ𝑜𝑙}

1From the Spanish suffix meaning small.
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Figure 12.3: Partial map of the Internet based on the January 15, 2005 data found on
opte.org. – Wiki
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Figure 12.4: Five small networks from the ergmito R package
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12.12 Power analysis in ERGMs

• Using conditional ERGMs (closely related to constrained), we can do power analysis
for network samples (G. G. Vega Yon 2023).

Figure 12.5: Reproduced from Krivitsky, Coletti, and Hens (2023b)

12.13 Two-step estimation ERGMs

• Conditioning the ERGM on an observed statistic “drops” the associated coefficient.

• Hypothesis: As 𝑛 increases, conditional ERGM estimates are consistent with the full
model:

12.14 Thanks!

12.15 Bonus track: Why network scientists don’t use
ERGMs?

Attempts to overcome these problems by extending the blockmodel have focused
particularly on the use of (more complicated) 𝑝∗ or exponential random graph
models, but while these are conceptually appealing, they quickly lose the
analytic tractability of the original blockmodel as their complexity in-
creases.
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Figure 12.6: Simulation study trying to demonstrate the concept (Work in progress)
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– Karrer and Newman (2011)
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